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Motivation

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface is conformally
equivalent to

• the unit disk

• the complex plane

• or the Riemann sphere

The theorem is consequence of the fact that every Riemann
surface has a conformal metric with constant Gaussian curvature.

Definition

Two Riemannian metrics g and h are conformal if there exists
positive function f ∈ C∞(M) such that h = e2fg.
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Question: Does this holds for higher dimension?

For a general Riemannian manifold (M, g) with dimM ≥ 3,
there are several choices of curvatures:

• Riemannian curvature tensor, n4 components

• Ricci curvature, n2 components

• scalar curvature, 1 component

Question: Which curvature to choose?



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Question: Does this holds for higher dimension?

For a general Riemannian manifold (M, g) with dimM ≥ 3,
there are several choices of curvatures:

• Riemannian curvature tensor

, n4 components

• Ricci curvature

, n2 components

• scalar curvature

, 1 component

Question: Which curvature to choose?



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Question: Does this holds for higher dimension?

For a general Riemannian manifold (M, g) with dimM ≥ 3,
there are several choices of curvatures:

• Riemannian curvature tensor, n4 components

• Ricci curvature, n2 components

• scalar curvature, 1 component

Question: Which curvature to choose?



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

The Yamabe Problem

Given a compact Riemannian manifold (M, g) with
n = dimM ≥ 3, find a metric conformal to g with constant
scalar curvature.
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Yamabe’s Approach to the Problem

Given two metrics g and g̃, the transformation law between the
scalar curvatures S and S̃,

S̃ = ϕ1−p(a∆ϕ+ Sϕ).

Here ϕ satisfies g̃ = ϕp−2g and a =
4(n− 1)

n− 2
, p =

2n

n− 2
are

constants.

Define � = a∆ + S and call it the conformal Laplacian. Let
S̃ = λ = const. Then

�ϕ = λϕp−1. (?)
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Equation (?) is the Euler-Lagrange equation for the Yamabe
functional

Qg(ϕ) =

∫
M a|∇ϕ|2 + Sϕ2 dVg( ∫

M |ϕ|p dVg
)2/p =

E(ϕ)

‖ϕ‖2p
.

Meaning: solution of (?) is critical point of Qg.

By Hölder’s inequality Qg(ϕ) is bounded below so we can take
the infimum

Definition

The Yamabe invariant is the constant

λ(M) = inf{Qg(ϕ) | ϕ ∈ C∞(M) and positive}
= inf{Qg(ϕ) | ϕ ∈ L2

1(M)}.

λ(M) is an invariant of the conformal class of (M, g).
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Main Results

Theorem A (Yamabe, Trudinger, Aubin)

For any compact Riemannian manifold M with λ(M) < λ(Sn),
the Yamabe problem is solvable.

Theorem B (Aubin)

If M has dimension n ≥ 6 and M is not locally conformally flat,
then λ(M) < λ(Sn).

Theorem C (Schoen)

If M has dimension n = 3, 4, 5 or M is locally conformally flat,
then either λ(M) < λ(Sn) or M is conformal to the n-sphere.
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Compact (M, g)

λ(M) ≤ λ(Sn)

Thm B: dimM ≥ 6, and M
not locally conformally flat

Thm C: dimM < 6, or
M locally conformally flat

λ(M) < λ(Sn) λ(M) < λ(Sn) M conformal to (Sn, ḡ)

Thm A
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Definition

A map F : (M, g)→ (N,h) is conformal if the induced metric
F ∗h is conformal to the original metric g on M . If F is a
diffeomorphism, then we call F a conformal diffeomorphism.

Example

• The stereographic map σ is a conformal diffeomorphism.

• Rotations, σ−1τvσ and σ−1δασ are conformal
diffeomorphisms.
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The Yamabe Problem on the Sphere

Let (Sn, ḡ) be the n-sphere with standard metric, then

S = n(n−1)
r2

. So the Yamabe problem is solvable on the sphere.

Moreover, one can prove the following.

Theorem

The Yamabe functional Qg(ϕ) on (Sn, ḡ) is minimized by

• constant multiples of ḡ;

• the images of ḡ under conformal diffeomorphisms.

These are the only metrics conformal to ḡ with constant scalar
curvature.
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An Upper Bound for λ(M)

Lemma (Aubin)

For any compact Riemannian manifold (M, g) of dimension
n ≥ 3, λ(M) ≤ λ(Sn) = Λ.

• Goal: to find a function ϕ makes Qg(ϕ) ≤ Λ.

• Consider ϕ = η · uα(x) where

η cut off function and uα(x) =
(
|x|2+α2

α

)(n−2)/2
.

• Qg(ϕ) =

∫
M a|∇ϕ|2 + Sϕ2 dVg

‖ϕ‖2p
≤ (1 + Cε)(Λ + Cα).
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Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact Riemannian manifold M with λ(M) < λ(Sn),
the Yamabe problem is solvable.

• Direct approach: construct a minimizing sequence (ui), with
‖ui‖p = 1 such that Qg(ui)→ λ(M). This does not work:
Although ϕ = limui ∈ L2

1(M), there is no guarantee for
‖ϕ‖p 6= 0, because the inclusion L2

1 ⊂ Lp is not compact.

• Instead we seek for a subcritical solution. The following
equation is call subcritical equation

�ϕ = λs ϕ
s−1. (?′)

1 p− 1s− 1 ∞

Qs(ϕ) = E(ϕ)
‖ϕ‖2s

, λs = inf{Qs(ϕ) : ϕ ∈ C∞(M)}.
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Proof of Thm A.

Step 1. Subcritical solution ϕs exists,

ϕs ∈ C∞(M), Qs(ϕs) = λs and ‖ϕs‖s = 1.

• Similar as before, pick a minimizing sequence;

• This time L2
1 ⊂ Ls is compact.

Step 2. Properties of λs. If
∫
M dVg = 1, then for 2 ≤ s ≤ p,

• |λs| is non-increasing;

• If λ(M) ≥ 0, then λs ≥ 0;

• λs is continuous from the left:

Definiton of λs ∃u s.t. Qs(u) < λs + ε;

Continuity of ‖u‖s as a function of s:

λs′ ≤ Qs
′
(u) < λs + 2ε, as s′ → s−.



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Proof of Thm A.

Step 1. Subcritical solution ϕs exists,

ϕs ∈ C∞(M), Qs(ϕs) = λs and ‖ϕs‖s = 1.

• Similar as before, pick a minimizing sequence;

• This time L2
1 ⊂ Ls is compact.

Step 2. Properties of λs. If
∫
M dVg = 1, then for 2 ≤ s ≤ p,

• |λs| is non-increasing;

• If λ(M) ≥ 0, then λs ≥ 0;

• λs is continuous from the left:

Definiton of λs ∃u s.t. Qs(u) < λs + ε;

Continuity of ‖u‖s as a function of s:

λs′ ≤ Qs
′
(u) < λs + 2ε, as s′ → s−.



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Proof of Thm A.

Step 1. Subcritical solution ϕs exists,

ϕs ∈ C∞(M), Qs(ϕs) = λs and ‖ϕs‖s = 1.

• Similar as before, pick a minimizing sequence;

• This time L2
1 ⊂ Ls is compact.

Step 2. Properties of λs.

If
∫
M dVg = 1, then for 2 ≤ s ≤ p,

• |λs| is non-increasing;

• If λ(M) ≥ 0, then λs ≥ 0;

• λs is continuous from the left:

Definiton of λs ∃u s.t. Qs(u) < λs + ε;

Continuity of ‖u‖s as a function of s:

λs′ ≤ Qs
′
(u) < λs + 2ε, as s′ → s−.



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Proof of Thm A.

Step 1. Subcritical solution ϕs exists,

ϕs ∈ C∞(M), Qs(ϕs) = λs and ‖ϕs‖s = 1.

• Similar as before, pick a minimizing sequence;

• This time L2
1 ⊂ Ls is compact.

Step 2. Properties of λs. If
∫
M dVg = 1, then for 2 ≤ s ≤ p,

• |λs| is non-increasing;

• If λ(M) ≥ 0, then λs ≥ 0;

• λs is continuous from the left:

Definiton of λs ∃u s.t. Qs(u) < λs + ε;

Continuity of ‖u‖s as a function of s:

λs′ ≤ Qs
′
(u) < λs + 2ε, as s′ → s−.



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Proof of Thm A.

Step 1. Subcritical solution ϕs exists,

ϕs ∈ C∞(M), Qs(ϕs) = λs and ‖ϕs‖s = 1.

• Similar as before, pick a minimizing sequence;

• This time L2
1 ⊂ Ls is compact.

Step 2. Properties of λs. If
∫
M dVg = 1, then for 2 ≤ s ≤ p,

• |λs| is non-increasing;

• If λ(M) ≥ 0, then λs ≥ 0;

• λs is continuous from the left:

Definiton of λs ∃u s.t. Qs(u) < λs + ε;

Continuity of ‖u‖s as a function of s:

λs′ ≤ Qs
′
(u) < λs + 2ε, as s′ → s−.



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Step 3. Suppose λ(M) < Λ, then the subcritical solution
ϕs ∈ Lr for s < s0 < p < r. As s→ p, ∃(ϕsj ) a subsequence
that converges uniformly and ϕ = limϕsj is the solution.

An intermediate step to show ϕs ∈ Lr:

‖w‖2p ≤ (1 + ε)
(1 + δ)2

1 + 2δ
· λs

Λ
· ‖w‖2p + C ′ε · ‖w‖22.

Need λ(M) < Λ to make the coefficient less than 1.

• Uniform boundedness in Lr =⇒ C2,α subsq
=⇒ C2;

• Arzela-Ascoli Thm gives a converging subsequence in C2;

• ϕ solves the Yamabe equation (needs Step 2), and
ϕ ∈ C∞(M) (ellptic regularity).
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Remark

The above proof requires λ(M) ≥ 0 (Step 2).
The fact that Λ = λ(Sn) > 0 completes the proof.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with λ(M) < λ(Sn), the Yamabe
problem is solvable.
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Remarks on Theorem B and C

Theorem B (Aubin)

If M has dimension n ≥ 6 and M is not locally conformally flat,
then λ(M) < λ(Sn).

Theorem C (Schoen)

If M has dimension n = 3, 4, 5 or M is locally conformally flat,
then either λ(M) < λ(Sn) or M is conformal to the n-sphere.



The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary

Theorem B (Aubin)

If M has dimension n ≥ 6 and M is not locally conformally flat,
then λ(M) < λ(Sn).

Estimation of E(ϕ):

E(ϕ) ≤

{
Λ‖ϕ‖2p − C|W (P )|2α4 + o(α4) n > 6

Λ‖ϕ‖2p − C|W (P )|2α4 ln(1/α) +O(α4) n = 6

M locally conformally flat ⇐⇒ the conformal part: W ≡ 0.
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Theorem C (Schoen)

If M has dimension n = 3, 4, 5 or M is locally conformally flat,
then either λ(M) < λ(Sn) or M is conformal to the n-sphere.

Estimation of E(ϕ):

E(ϕ) ≤ Λ‖ϕ‖2p − Cµα−k +O(α−k−1).

Identify µ with “mass”. The positive mass theorem gives µ > 0.
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Summary

Compact (M, g)

λ(M) ≤ λ(Sn)

Thm B: dimM ≥ 6, and M
not locally conformally flat

Thm C: dimM < 6, or
M locally conformally flat

λ(M) < λ(Sn) λ(M) < λ(Sn) M conformal to (Sn, ḡ)

Thm A
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