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Motivation

In 2D case

Uniformazation Theorem
Every simply connected Riemann surface is conformally
equivalent to

® the unit disk

® the complex plane

® or the Riemann sphere
The theorem is consequence of the fact that every Riemann
surface has a conformal metric with constant Gaussian curvature.
Definition
Two Riemannian metrics g and h are conformal if there exists
positive function f € C°°(M) such that h = e?/g.
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Question: Does this holds for higher dimension?

For a general Riemannian manifold (M, g) with dim M > 3,
there are several choices of curvatures:

¢ Riemannian curvature tensor, n*

2

components
e Ricci curvature, n“ components

® scalar curvature, 1 component

Question: Which curvature to choose?
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scalar curvature.

Given a compact Riemannian manifold (M, g) with
n =dim M > 3, find a metric conformal to g with constant
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Yamabe's Approach to the Problem
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Given two metrics g and g, the transformation law between the
scalar curvatures S and S,

S = o P(alp + Sy).

Here ¢ satisfies § = ¢P~2g and a =
constants.
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Yamabe's Approach to the Problem

Given two metrics g and g, the transformation law between the
scalar curvatures S and S,

S = o' P(aAp + Sp).

Define L1 = aA + S and call it the conformal Laplacian. Let
S = X\ = const. Then

Op = ApP™L. (*)
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Equation (x) is the Euler-Lagrange equation for the Yamabe
functional

_ Ly alVel + 822V, Ble)
(ulerav)™ Tl

Qq(p)

Meaning: solution of (x) is critical point of Q.
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By Hdlder's inequality Q4(¢) is bounded below so we can take
the infimum

Definition
The Yamabe invariant is the constant
AM) =inf{Qq4(p) | ¢ € C*°(M) and positive}
= inf{Qq(p) | ¢ € LI(M)}.

A(M) is an invariant of the conformal class of (M, g).
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Main Results

Theorem A (Yamabe, Trudinger, Aubin)

For any compact Riemannian manifold M with A\(M) < A(S™),
the Yamabe problem is solvable.

Theorem B (Aubin)

If M has dimension n. > 6 and M is not locally conformally flat,
then A(M) < A(S™).

Theorem C (Schoen)

If M has dimension n = 3,4,5 or M is locally conformally flat,
then either N\(M) < A(S™) or M is conformal to the n-sphere.



A(M) < A(S™)

Thm B: dim M > 6, and M Thm C: dim M < 6, or
not locally conformally flat M locally conformally flat

| N

[A(M) < A(S“)] [A(M) < A(S”)] [M conformal to (S™, g)]
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A map F': (M,g) — (N, h) is conformal if the induced metric
F*h is conformal to the original metric g on M. If F'is a
diffeomorphism, then we call ' a conformal diffeomorphism.



Definition

A map F': (M,g) — (N, h) is conformal if the induced metric
F*h is conformal to the original metric g on M. If F'is a
diffeomorphism, then we call ' a conformal diffeomorphism.

Example

® The stereographic map o is a conformal diffeomorphism.

* Rotations, 0 17,0 and 0~16,0 are conformal
diffeomorphisms.
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The Yamabe Problem on the Sphere

Let (S™,g) be the n-sphere with standard metric, then
S =

n(n=1) " So the Yamabe problem is solvable on the sphere.



The Yamabe Problem on the Sphere

Let (S™, g) be the n-sphere with standard metric, then

S = "(Z;U. So the Yamabe problem is solvable on the sphere.

Moreover, one can prove the following.

Theorem

The Yamabe functional Q4(p) on (S™,g) is minimized by
® constant multiples of g;
® the images of g under conformal diffeomorphisms.

These are the only metrics conformal to g with constant scalar
curvature.



[e]e]e]

0000

The Yamabe Problem Main Results The model case: sphere The subcritical solution The test function estimate Summary
00e

[e]e]e]

An Upper Bound for A\(M)

[©]

Lemma (Aubin)

For any compact Riemannian manifold (M, g) of dimension
n >3, A(M) < AS™) =A.

® Goal: to find a function ¢ makes Q4(¢) < A



An Upper Bound for A(M)

Lemma (Aubin)

For any compact Riemannian manifold (M, g) of dimension
n >3, A(M) < A(S") =A.

* Goal: to find a function ¢ makes Q4(¢) < A.
e Consider ¢ =1 - uq(x) where
Ix\2+a2>("*2)/2

(67

7 cut off function and u,(z) = (

alVe|? + Sp? dV,
* Qq4(p) = Jus EE I < (14 Ce)(A+Ca).
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Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact Riemannian manifold M with A\(M) < A(S™),
the Yamabe problem is solvable.

® Direct approach: construct a minimizing sequence (u;), with
|uillp = 1 such that Q4(u;) — A(M). This does not work:
Although ¢ = limu; € L3(M), there is no guarantee for
ll¢llp # 0, because the inclusion L? C LP is not compact.
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Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact Riemannian manifold M with A\(M) < A(S™),
the Yamabe problem is solvable.

¢ Instead we seek for a subcritical solution. The following
equation is call subcritical equation

Op = As gps_l. ()
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Proof of Thm A.
Step 1. Subcritical solution ¢ exists,

s € C(M),Q%(ps) = As and [Jpps]ls = 1.

e Similar as before, pick a minimizing sequence;

® This time L C L® is compact.
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ps exists,

€ C®(M),Q°(¢s) = As and ||ps|ls = 1.
Similar as before, pick a minimizing sequence
This time L§ C L?® is compact

Step 2. Properties of A
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Step 2. Properties of A,. If [}, dV; =1, then for 2 < s <p,
® |Xs| is non-increasing;
e If A\(M) >0, then A\; > 0;



Proof of Thm A.

Step 2. Properties of \;. If [}, dV; =1, then for 2 < s < p,
® |)Xs| is non-increasing;
° If A\(M) >0, then A\; > 0;
® )\, is continuous from the left:
Definiton of Ay Ju s.t. Q*(u) < As + €;
Continuity of ||u||s as a function of s:

Ao < Q% (u) < Ag+ 26, as s’ — 5.
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that converges uniformly and ¢ = lim ¢, is the solution.



Step 3. Suppose A(M) < A, then the subcritical solution
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that converges uniformly and ¢ = lim ¢, is the solution.

An intermediate step to show p; € L":

(1468)2 g
- wllg + L Hlwl3.

2
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Step 3. Suppose A(M) < A, then the subcritical solution
s € L" for s < sp <p <7. As s — p, I(ps;) a subsequence
that converges uniformly and ¢ = lim ¢, is the solution.

An intermediate step to show p; € L":

(1+68)% A
- lwlf + G- w3

2
< -~ 7

Need A(M) < A to make the coefficient less than 1.



Step 3. Suppose A(M) < A, then the subcritical solution
s € L" for s < sp <p <7. As s — p, I(ps;) a subsequence
that converges uniformly and ¢ = lim ¢, is the solution.

. . b
e Uniform boundedness in L" — (2« = 02,
* Arzela-Ascoli Thm gives a converging subsequence in C?;

® ¢ solves the Yamabe equation (needs Step 2), and
@ € C°(M) (ellptic regularity).



Remark

The above proof requires A(M) > 0 (Step 2).
The fact that A = A(S™) > 0 completes the proof.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with \(M) < A(S™), the Yamabe
problem is solvable.



Remarks on Theorem B and C

Theorem B (Aubin)

If M has dimension n. > 6 and M is not locally conformally flat,
then \(M) < \(S™).

Theorem C (Schoen)

If M has dimension n = 3,4,5 or M is locally conformally flat,
then either \(M) < X(S™) or M is conformal to the n-sphere.



Theorem B (Aubin)

If M has dimension n. > 6 and M is not locally conformally flat,
then \(M) < \(S™).

Estimation of E(p):

B < [ Mol = CIw Pt n>0
= Al - cIw (P)Pat n(1/a) n="6

M locally conformally flat <= the conformal part: W = 0.



Theorem C (Schoen)

If M has dimension n = 3,4,5 or M is locally conformally flat,
then either \(M) < X(S™) or M is conformal to the n-sphere.

Estimation of E(y):
E(p) < Allgl; = Cpa™*

Identify 1 with “mass”. The positive mass theorem gives p > 0.



Summary

Thm B: dim M > 6, and M Thm C: dim M < 6, or
not locally conformally flat M locally conformally flat

| AN

(A1) < AS™)] (A1) < AS™)] (M conformal to ($",5)]
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