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Abstract

Given a conformal class of metrics on the boundary of a manifold, one can

ask for the existence of an Einstein metric whose conformal infinity satisfies the

boundary condition.

In 1991, Graham and Lee studied this boundary problem on the hyperbolic

ball. They proved the existence of metrics sufficiently close to the round met-

ric on a sphere by constructing approximate solutions to a quasilinear elliptic

system. In his monograph (2006), Lee discussed the boundary problem on a

smooth, compact manifold-with-boundary. Using a similar construction, he

proved the existence and regularity results for metrics sufficiently close to a

given asymptotically hyperbolic Einstein metric. The proof is based on a linear

theory for Laplacian and the inverse function theorem.
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1 Introduction

These are the notes for a talk I gave in the graduate analysis seminar at UIUC.

The purpose of this talk is to solve a boundary problem for Einstein metrics using

the inverse function theorem. There won’t be too much detail about the geometry,

though I will make necessary comments to help audiences understand several essential

notions in the theorem, such as Ricci curvature and boundary-defining function. Let’s

begin with setting up some notations and discussing some geometry backgrounds.

1.1 Notations

List of symbols encountered in this talk

1. M : compact (n+ 1)-dim Riemannian manifold with boundary, n ≥ 3.

2. M : interior of M ,

g, h: Riemannian metric on M .
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3. ∂M : boundary of M ,

ĝ, ĥ Riemannian metric on ∂M , which define conformal classes on ∂M .

4. ρ: smooth boundary defining function

ḡ = ρ2g Riemannian metric on M .

Remark 1.1.

• Conformal class: We call two metrics conformal if they differ by a smooth

nonnegative function, for example g and ρ2g. This gives an equivalence relation,

and we call [g] the conformal class. We usually assume ĝ of class C l,β.

• Boundary defining function: ρ is a function defined on the manifold which

vanishes to the first order. ρ > 0 on M , ρ = 0 on ∂M and dρ ̸= 0 on ∂M .

• The conformal class [ĝ] is called the conformal infinity of the manifold.

1.2 Boundary problem

Let M be a manifold with boundary as above. Given a conformal infinity ĝ at the

boundary, we can ask if there is an Einstein metric g on M satisfying the boundary

condition. That is

Ricg = −ng (Einstein condition)

g has the given conformal infinity (boundary condition)

Here Ricg stands for the Ricci curvature.

Remark 1.2 (Ricci curvature). The Ricci curvature depends only on the Riemannian

structure of the manifold. Once we fix a metric g on the manifold, it gives rise to a

so-called Levi-Civita connection ∇g. Intuitively the Levi-Civita connection allows us

to compare local geometric objects, such as tangent vectors or tensors. We can define

the Riemannian curvature tensor to measure the failure of recovering the original

direction when parallel transporting a vector along a closed loop.

The Riemannian curvature is a (3,1)-tensor, which can be written explicitly using the
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metric (for our purpose, I’ll avoid using Christoffel symbols, though let’s use them

here to save space)

R d
abc =

∂Γ d
ac

∂xb
− ∂Γ d

bc

∂xa
+

n∑
e=1

(Γ e
ac Γ

d
be − Γ e

bc Γ d
ae ) = Γ d

ac,b − Γ d
bc,a +Γ e

ac Γ
d

be − Γ e
bc Γ d

ae ,

where

Γ c
ab =

1

2
gcd(gda,b + gdb,a − gab,d).

The Ricci curvature is given by taking the trace of the above tensor. One could think

of taking traces as forcing two indices to be the same in the Riemannian curvature

tensor. With the Einstein summation notation, we denote this by Ricac = R c
abc . The

Ricci curvature is a (2, 0)-tensor.

If g is a conformally compact metric, its Ricci curvature is of the following form

Rjk = −ρ−2n(ḡilρiρlḡjk) + ρ−1E1(ḡ) + E2(ḡ)

= ρ−2E0(ḡ) + ρ−1E1(ḡ) + E2(ḡ),

where E0(ḡ) denotes a polynomial in ḡ and ḡ−1; E1(ḡ) can contain the first derivatives

of ḡ and E2(ḡ) can contain the second derivatives of ḡ or quadratic in first derivatives.

Throughout this talk, I will refer to those notations frequently.

1.3 Main result

Theorem 1.3. Given a manifold and a boundary defining function as above, and

suppose there exists an Einstein metric h on the interior, which is conformally com-

pact and of class C l,β, with 2 ≤ l < n−1 and 0 < β < 1, having nonpositive sectional

curvature. Denote ĥ = ρ2h|∂M . Then there exists ϵ > 0 such that for any metric ĝ

on the boundary which is close to ĥ (in the C l,β norm), there is an Einstein metric g

on the interior which has [ĝ] as its conformal infinity and of class C l,β.

Remark 1.4. In [1], Graham and Lee proved the above theorem on hyperbolic balls.

To be more precise, given a conformal infinity that is sufficiently closed to the standard
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metric on the sphere, there is an Einstein metric that is closed to the hyperbolic

metric.

In [2], Lee proved the above theorem for a more general compact manifold with

boundary. The ideas of solving such problems are nearly identical. For the sake of

concreteness, let’s focus on the first case most of the time. And I’ll point out the

difference in handling Bn+1 and a general manifold with a boundary when needed.

1.4 Outline of the proof

We will define an operator F which conveys the Einstein condition and perturb the

operator by some Φ(g, t) (we will define it later) which depends on both the given

metric and an auxiliary metric t. Note: t depends on the boundary condition.

Using the perturbed operator, we convert the original boundary value problem into

solving the partial differential equation

Q(g, t) = F (g)− Φ(g, t) = 0.

We will construct a sequence of asymptotically hyperbolic solutions to approximate

the solution. The key theorem to obtain an exact solution is the inverse function

(this requires some work). So it is important that the approximate solutions de-

pend smoothly on the data. (We will define an extension operator in order to keep

asymptotically hyperbolic condition.

2 Perturbation operator

We choose

F (g) = Ricg +ng and Φ(g, t) = δ∗ggt
−1δgGgt,

so that the zero set of F is the collection of Einstein metrics.

Remark 2.1.

• Gg is the Einstein tensor / gravitational operator
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• δgGg Ricg = 0 is the second Bianchi identity. This equation says the divergence

of Einstein tensor is zero.

2.1 How is Φ chosen

The choice of Φ might be less obvious. We add this term on purpose so that the

perturbed operator is elliptic.

As suggested in DeTurck’s paper, the linearization of Ricci curvature fails to be elliptic

because of its second term:

Ric′g(h) =
d

dt

∣∣∣
t=0

Ric(g + th) =
1

2
∆Lh− δ∗(δGgh).

However, the first term is the Lichnerowicz Laplacian, which we know is elliptic. This

suggest we need to add a gauge-breaking term δ∗ggt
−1δgGgt (this happens to be the

divergence of harmonic map Laplacian of the identity id : (M, g) → (M, t). One can

check that Φ eliminates the second term to the second order.

2.2 Linearization of Q

In this section, let’s discuss the linearization of the perturbed operator Q(g, t), which

will be used later on when we construct approximate solutions.

Proposition 2.2. For metrics g, t and a symmetric 2-tensor r, we have

D1Q(g,t)(r) =
d

ds

∣∣∣
s=0

Q(g + sr, t) = DRicg(r) + nr −D1ϕ(g,t)(r)

=
1

2
∆gr +R(r) + nr − δ∗g(C(r)−D(r))− B(r),

where R,B, C,D are defined in [1] Equation (2.5) and Lemma 2.3.

For a complete computation of the above formula, see [1] (Section 2). Here, let

me emphasizes Q is elliptic, because its principal symbol is one-half the covariant

Laplacian ∆g.
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If we further assume g and t are asymptotically hyperbolic metrics with ḡ|∂M = t̄|∂M ,

there is a nice approximation for the Riemannian curvature

Rijkl = −(gikgjl − gilgjk) +O(ρ3).

which implies R(r) + nr = −r + trg(r)g + O(ρs+1), and the B, C,D part vanishes.

Simplifying and decomposing the linearization of Q into trace part and trace-less part

gives the following.

Proposition 2.3. Suppose g, t are asymptotically hyperbolic metrics with ḡ|∂M =

t̄|∂M . Write r = ρsq̄, where q̄ ∈ C2(M,S2). If r = ug + r0 where r0 is the trace-free,

then

D1Q(g,t)(r) =
1

2
∆gr − r + trg(r)g +O(ρs+1)

=
1

2
(∆g + 2n)(ug) +

1

2
(∆g − 2)(r0) +O(ρs+1)

Remark 2.4. The above linearization D1Q with respect to g at a confromally com-

pact Einstein metric h is

D1Q(h,h) =
1

2
(∆L + 2n),

which is an isomorphism between weighted Hölder spaces. That will be a crucial fact

for us to construct approximate solutions.

[P194 Lemma 2.2 strictly negative Ricci curvature implies the solution is an Einstein

metric.]

3 Functional spaces

In order to construct approximate solutions, let’s first define the following function

spaces:

• C l, β
(0) (M ; Σ2M) = the usual Banach space of functions on M with k-Hölder

continuous derivatives
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• C l, β
(s) (M ; Σ2M) := {u ∈ C l, β

(0) (M ; Σ2M) | u = O(ρs)} for 0 ≤ s ≤ l + β. This is

called weighted Hölder space.

Remark 3.1. One needs to be more careful in dealing with function spaces on a

manifold with boundary. See [2] Chapter 3 for a complete discussion about functional

space and Sobolev embedding. In most cases, the properties of function spaces are

proved by applying Taylor’s expansion locally in the background charts.

We will apply the following lemma

Lemma 3.2.

(i) C l, β
(s) (M ; Σ2M) =

{
u ∈ C l, β

(0) (M ; Σ2M) :
∂iu

∂ρi

∣∣∣∣
∂M

= 0,∀i ∈ [0, s)

}
.

(ii) ρ−jC l, β
(s) (M ; Σ2M) ⊂ C l−j, β

(s−j) (M ; Σ2M) for 0 < j ≤ s.

Proof. Note that locally the one variable version of Taylor’s formula to functions in

C l, β
(0) (M ; Σ2M), with m ≤ l, gives that

u(θ, ρ) =
m−1∑
i=0

1

i!
· ∂

i

∂ρi
(θ, 0) +

ρm

(m− 1)!

∫ 1

0

(1− t)m−1 · ∂
m

∂ρm
(θ, tρ) dt.

If u = O(ρs), all partial derivatives of order less than s should vanish, hence the

weighted Hölder space is given by (i). (ii) follows by multiplying through by ρ−j.

4 Laplace operator

In this section, let’s discuss the case when the Laplacian operator is an isomorphism

between weighted Hölder spaces.

Proposition 4.1. Suppose g is asymptotically hyperbolic and consider f ∈ C2(R), ū ∈
C2(M) and κ ∈ R. We can expand the Laplacian operator apply to f(ρ)ū as the
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following

(∆g + κ)(f(ρ) ū) = (−ρ2f ′′(ρ) + (n− 1)ρf ′(ρ) + κf(ρ)) ū+ ρX(f),

where X is some second-order polynomial in ρ d
dρ
.

Let me refer the proof to [1] Corollary 2.7 and 2.8.

Denote

I(f) = −ρ2f ′′ + (n− 1)ρf ′ + κf.

The ordinary differential operator is called the indicial operator for ∆g + κ acting

on functions. The real numbers s for which I(ρs) = 0 are called the characteristic

exponents. For the Laplacian operator, the characteristic exponents are

s1,2 =
1

2
(n±

√
n2 + 4κ).

It follow from the expansion that

Lemma 4.2. If s ̸= s1,2, then there exists a solution ū ∈ C2(M) to the equation

(∆g + κ)(ρsū) = ρsv̄ +O(ρs+1).

Proof. Note that I(ρs) = (κ− s(s− n))ρs. Taking ū = (κ− s(s− n))−1v̄,

(∆g + κ)(ρsū) = Ii(ρ
s)ū+ ρX(ρs) = (κ− s(s− n))ρs(κ− s(s− n))−1v̄ +O(ρs+1).

More generally, there is a theorem for a self-adjoint, elliptic, geometric partial dif-

ferential operator of order m ≤ l. For our purpose, it is enough to consider indicial

theory for the Laplacian operator. I state the theorem here and refer to [1] for a

complete discussion on indicial operators.
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Theorem 4.3. Let P : C∞(M ;E) → C∞(M ;E) be a self-adjoint, elliptic, geometric

partial differential operator of order m ≤ l. Suppose α ∈ (0, 1), k+α ∈ (0, l+β), δ ∈ R
and u ∈ Ck,α

(s) (M ;E) where s ∈ [1, k + α). Then

ρ−δ−sP (ρδu)
∣∣∣
∂M

= Iδ+s(P )û.

5 Approximation

5.1 First approximate solution

We now have all the tools needed to construct approximate solutions. In this section

we will prove that if t is an asymptotically hyperbolic metric then Q(g, t) = O(ρ−1).

So that this gives our first attempt of the approximation.

Proposition 5.1. Suppose t is an asymptotically hyperbolic metric and g is confor-

mally compact with ḡ ∈ C2(M,S2). Then Q(g, t) = O(ρ−1) if and only if the following

the holds on ∂M

trḡ(t̄) = n+ 1, ḡ−1dρ = t̄−1dρ.

Proof. Note that Q(g, t) is of the form

ρ−2E0(ḡ, t̄) + ρ−1E1(ḡ, t̄) + E2(ḡ, t̄).

So Q(g, t) = O(ρ−1) precisely when E0(ḡ, t̄) vanishes. Expanding E0(ḡ, t̄) gives

E0(ḡ, t̄) = n(1− ḡilρiρj)ḡjk −
1

2
(Bkρj +Bjρk),

where B = [(trḡ t̄)ḡt̄
−1 − (n + 1)dρ]. So the ”only if” part is clear (and this is what

we need for the first approximation).

For the ”if” part, if we set the right hand side to be zero, then it forces B = 0.

Now for a given boundary condition ĝ on ∂M , let’s denote g0 = ρ−2ḡ, and require g0

to be a metric satisfying the boundary condition. If we fix the auxiliary metric which
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satisfies the equations in Proposition 5.1, then Q(g0, t) = O(ρ−1), hence giving a first

approximate solution g0 to the equation Q(g0, t) = 0. Here we have an obvious choice

t = g0. Through out the rest of our approximation, we will set t = g0.

Remark 5.2. Furthermore, we can use Proposition 5.1 to ensure all approximate

solutions in our construction are asymptotically hyperbolic, and satisfy the boundary

condition.

5.2 Higher-order approximations

In this section, we will modify the first approximation g0 inductively to make Q(g, g0)

vanish to a higher order. We require the construction depends smoothly on the initial

data since we need to apply the inverse function theorem. The goal is to prove the

following theorem.

Theorem 5.3. Suppose 0 < β < 1, 2 ≤ l ≤ n − 1, and h is an asymptotically

hyperbolic metric on M of class C l,β. Let ĝ be any metric on ∂M of class C l,β, and

set

g0 = T (ĝ) = h+ ρ−2E(ĝ − ĥ).1

There exists an asymptotically hyperbolic metric g of class C l,β on M such that

ρ2g|∂M = ĝ and

Q(g, g0) ∈ C l−2, β
(l−2+β)(M ; Σ2M).

In order to match the notation in [2], let’s denote

Q(ḡ, t̄) = ρ2Q(ρ−2g, ρ−2g0).

Our plan is to approximate the solution g by a sequence of metrics gk, such that

Q(ḡk, ḡ0) = o(ρk).

1Here we need the help of an extension operator E which extends the metric to the interior and

keep the resulting metric asymptotically hyperbolic.
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5.2.1 Identify the Hölder space containing Q

Lets first assume such a sequence {ḡk} of approximate solutions exists and see which

Hölder space is Q belongs to:

The case k = 0. Note that Q has two more orders of ρ. Using the computation for

the first approximation, Q(ḡ0, ḡ0) = O(ρ). On the other hand, we can write Q in local

coordinates as the following:

Q(ḡ, ḡ0) = E0(ḡ, ḡ0) + ρE1(ḡ, ḡ0) + ρ2E2(ḡ, ḡ0).

Recall E0(ḡ, ḡ0) are polynomials in ḡ and its inverse. If ḡ is of class C l, β
(0) (M ; Σ2M),

E0(ḡ, ḡ0) ∈ C l, β
(0) (M ; Σ2M). Hence

Q(ḡ, ḡ0) ∈ C l, β
(0) (M ; Σ2M) + ρC l−1, β

(0) (M ; Σ2M) + ρ2C l−2, β
(0) (M ; Σ2M).

Intersecting this with O(ρ), and using Hölder embedding (Lemma 3.2 (ii)), the first

term (blue) is absorbed by the second term (red). So

Q(ḡ, ḡ0) ∈ C l, β
(1) (M ; Σ2M)+ρC l−1, β

(0) (M ; Σ2M) + ρ2C l−2, β
(0) (M ; Σ2M)

⊂ρC l−1, β
(0) (M ; Σ2M) + ρ2C l−2, β

(0) (M ; Σ2M).

The case k = 1. Similar to k = 0, under the assumption Q(ḡ1, ḡ0) = o(ρ), we apply

Lemma 3.2 (ii) again to obtain the embedding ρC l−1, β
(1) (M ; Σ2M) ⊂ ρ2C l−2, β

(0) (M ; Σ2M).

This implies

Q(ḡ1, ḡ0) ∈ ρ2C l−2, β
(0) (M ; Σ2M).

The case k > 1. In this case we are left with a single Hölder space, so any extra

powers of ρ is combined into the weighted part.

To summarize the above: The assumption Q(ḡk, ḡ0) = o(ρk) gives the following

Q(ḡk, ḡ0) ∈


ρC l−1, β

(0) (M ; Σ2M) + ρ2C l−2, β
(0) (M ; Σ2M), k = 0

ρ2C l−2, β
(k−1) (M ; Σ2M), 1 ≤ k ≤ l − 1

ρ2C l−2, β
(l−2+β)(M ; Σ2M), k = l
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5.2.2 Existence of the sequence

It remains to prove such a sequence {ḡk} exists. Assume by induction for some k,

we have constructed ḡk−1 ∈ C l, β
(0) (M ; Σ2M) satisfying the above. It suffices to find

r̄ ∈ C l, β
(k) (M ; Σ2M), such that ḡk = ḡk−1 + r̄.

Using Taylor expansion,

Q(ḡk−1 + r̄, ḡ0) = Q(ḡk−1, ḡ0) +D1Q(ḡ,t̄)(r̄) +

∫ 1

0

(1− λ)D1Q(ḡ+λr̄,t̄)(r̄, r̄)dλ.

Here the second order derivative of D1Q is ρ−2 times a homogeneous quadratic poly-

nomial in r̄, ρ∂r̄ and ρ2∂2r̄, hence of order o(ρk). This implies

Q(ḡk, ḡ0) = Q(ḡk−1 + r̄, ḡ0)

= Q(ḡk−1, ḡ0) + ρ2(∆L + 2n)(ρ−2r̄) + o(ρk).

Let’s denote v̂ = ρ−kQ(ḡk−1, ḡ0)
∣∣∣
∂M

. It suffices to find r̄ such that

ρ2−k(∆L + 2n)(ρ−2r̄)
∣∣∣
∂M

= Ik−2(∆L + 2n)(ρ−kr̄)
∣∣∣
∂M

+O(ρ).

Applying Lemma 4.2, we know when −2 < s < n − 2, Is(∆L + 2n) is invertible. So

there is a unique C l−k,β tensor field ψ along ∂M that solves

Ik−2(∆L + 2n)(ψ) = −v̂.

Then there is a tensor field r̄ ∈ C l, β
(k) (M ; Σ2M) such that

ρ−kr̄
∣∣∣
∂M

= ψ =⇒ Ik−2(∆L + 2n)(ρ−kr̄) = ρ2(∆L + 2n)(ρ−2r̄) = −v̂.

After the k = l step, we obtain a metric ḡ = ḡl which is lies in the Hölder space

C l−2, β
(l−2+β)(M ; Σ2M). This completes the proof.

Note that the above proof gives an operator S : ĝ 7→ g.
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6 Inverse function theorem

In this section, we will apply the inverse function theorem. First, let’s restrict the

space so that S(ĝ) + r is a metric and consider the map

Q(ĝ, r) =
(
ĝ, Q(S(ĝ) + r, T (ĝ)

))
,

where T (ĝ) = h + ρ−2E(ĝ − ĥ) will be an asymptotically hyperbolic metric, when ĝ

is closed enough to ĥ.

Note that when h is Einstein, S(ĥ) = T (ĥ) = h and hence Q(ĥ, 0) = (ĥ, 0). Moreover

the linearzation of Q at (ĥ, 0) is given by

DQ(ĥ,0)(q̂, r) =
(
q̂, D1Q(h,h)(DSĥq̂ + r) +D2Q(h,h)DTĥq̂

)
= (q̂, (∆L + 2n)r +Kq̂),

where Kq̂ = D1Q(h,h)(DSĥq̂) +D2Q(h,h)DTĥq̂.

Use Lemma 4.2 we know that ∆L + 2n is invertible, hence the linearization of Q is

nonsingular. We can actually write its inverse explicitly

(DQ(ĥ,0))
−1(ŵ, v) = (ŵ, (∆L + 2n)−1)(v −Kŵ).

So we are allowed to apply the inverse function theorem, and get a solution to the

equation Q(g, t) = 0.

Now it remains to use algebraic argument to prove that when we have a solution of

Q(g, t) = 0 and the Ricci curvature strictly negative on the manifold. That is, when

Ricg(V, V ) ≤ K|V |2g, for some K ≤ 0,

the perturbed operator Φ vanishes, so that we obtain an Einstein metric.

Apply Bianchi operator to the equation Q(g, t) = 0 gives δgGgΦ(g, t) = 0. If we write

w = gt−1δgGgt then this becomes δgGgδ
∗w = 0. Using Ricci identity this can be

writen as 1
2
(wj

i,j +Rijw
j) = 0. Hence we can bound the Laplacian by

∆L|w|2g ≤ K|w|2g.

And using generalized maximum principle we conclude w = 0.
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