The Renormalized Volume of Conformally Compact Einstein Manifolds

Xinran Yu

Oct 12, 2022

Abstract

In this talk, I will introduce the renormalized volume of a conformally compact Einstein manifolds. The classical volume for any conformally compact manifold is infinite, just like the case for a hyperbolic plane. We are interested in finding an appropriate renormalization. It turns out that under Einstein condition, the zeroth order term in the volume expansion of the complement of a collar neighborhood gives a scalar conformal invariant. In the even-dimensional case, this term is the renormalized volume.

This renormalization is initially motivated by the AdS/CFT correspondence in physics. There are many interesting results of the renormalized volume of a conformally compact manifold. For example, we can link the renormalization to the Chern-Gauss-Bonnet formula and Branson's Q-curvature. Furthermore, we may define a renormalized integral and prove a renormalized version of the Atiyah-Singer index theorem.

Contents

1 Introduction 2
1.1 Motivation 2
1.2 Set up 3
2 Volume and area renormalization 5
2.1 Volume renormalization 5
2.2 Area renormalizaton 8
3 Integral renormalization 8
3.1 Riesz regularization 9
4 Applications 10
4.1 Pfaffian 10
4.2 Renormalized index theorem 11
5 Generalization 11
5.1 Singular Yamabe metrics 11
5.2 Other known results 11

1 Introduction

In the first two sections we follow the construction in Graham's paper [5] to define the renormalized volume. After that, we will see examples of linking the renomalization with Gauss-Bonnet theorem.

1.1 Motivation

- Volume of conformally compact manifold is unbounded. Certain renormalization is required to obtain a geometric invariants of conformally compact manifold.
- In physics, one associate observableS to submanifolds N in M. Using a suitable approximation, AdS/CFT correspondence in physics offers a way to compute the expectation of an observable in terms of the volume of minimal submanifolds Y whose boundary is N.
- The coefficient before log term (n odd case) gives a generalized version of the Willmore functional ("the rigid sting action") on conformal manifold.
- There is a renormalize version of the Atiyah-Singer index theorem.

1.2 Set up

Through out this notes, we let \bar{X}^{n+1} be a manifold with boundary, and denote X as its interior, and M as its boundary.

Definition 1.1 (bdf). A boundary defining function (bdf) is a smooth function ρ on \bar{X}, which is positive on X and vanishes to the first order on M.
Definition 1.2 (conformally compact). A Riemannian metric g_{+}on X is called conformally compact if for some choice of bdf $\rho, \bar{g}:=\rho^{2} g_{+}$extends continuously as a metric to \bar{X}.

Definition 1.3 (conformal infinity). Let g_{+}be Riemannian metric on X, and let h be Riemannian metric on M. The conformal class [h] is called the conformal infinity of g_{+}, if for some choice of bdf $\rho, \bar{g}:=\rho^{2} g_{+}$extends continuously as a metric to \bar{X} and $\left.\bar{g}\right|_{M}=h$.

Figure 1: Manifold with boundary, bdf and conformal infinity

Example 1.4.

1. Hyperbolic plane. Consider \mathbb{H} with the hyperbolic metric $g_{+}=\frac{d x^{2}+d y^{2}}{y^{2}}$. Here the bdf is y, with conformal infinity $h=d x^{2}$.
2. Hyperbolic ball. Consider B^{n+1} with the hyperbolic metric

$$
g_{+}=g_{B^{n+1}}=\frac{4 \sum_{i}\left(d x^{i}\right)^{2}}{\left(1-|x|^{2}\right)^{2}} .
$$

Here the bdf is $\frac{\left(1-|x|^{2}\right)^{2}}{2}$, with conformal infinity $h=\left.\sum_{i}\left(d x^{i}\right)^{2}\right|_{S^{n}}$.

From now on we assume g_{+}is Einstein, i.e. Ric $^{g_{+}}=-n g_{+}$. This condition determines the bdf uniquely. Indeed, under conformal change we may write

$$
\operatorname{Ric}_{i j}=-|\mathrm{d} \rho|_{\bar{g}}^{2} n g_{i j}+O\left(\rho^{-3}\right),
$$

where $|\mathrm{d} \rho|_{\bar{g}}^{2}=\bar{g}^{i j} r_{i} r_{j}$. So the Einstein condition implies $|\mathrm{d} \rho|_{\bar{g}}^{2}=1$. Then it follows from the fact that for $\rho=e^{w} x$, the PDE

$$
1=|\mathrm{d} \rho|_{\bar{g}}^{2}=|d x+x d w|_{\bar{g}}^{2}+2 x\left(\nabla_{\bar{g}} x\right) w+x^{2}|d w|_{\bar{g}}^{2}
$$

has unique solution.
Definition 1.5. We call the conformally compact metric g on M asymptotically hyperbolic if the bdf ρ satisfies $|\mathrm{d} \rho|_{\bar{g}}^{2}=1$. And ρ is called a special bdf.
Consider a collar neighborhood $M \times[0, \epsilon)$ of M, where the metric \bar{g} takes the normal form $g_{\rho}+\mathrm{d} \rho^{2}$. Hence

$$
\begin{equation*}
g_{+}=\rho^{-2}\left(g_{\rho}+\mathrm{d} \rho^{2}\right) . \tag{1}
\end{equation*}
$$

Figure 2: Collar neighborhood

Example 1.6 (Special bdf for hyperbolic ball). The special bdf for the hyperbolic metric $g_{B^{n+1}}$ is $\rho=\frac{1-|x|}{1+|x|}$, and $\bar{g}=\frac{4 \sum_{i}\left(d x^{i}\right)^{2}}{(1+|x|)^{4}}$ can be decomposed as $\bar{g}=\underbrace{\frac{\left(1-\rho^{2}\right)^{2}}{4} g_{S^{n}}}_{g_{\rho}}+\mathrm{d} \rho^{2}$.

2 Volume and area renormalization

2.1 Volume renormalization

In this section we defined the renormalized volume.
Using Equation (1) the volume form dvol $_{g_{+}}$is given by

$$
\begin{equation*}
\operatorname{dvol}_{g_{+}}=\rho^{-n-1} \sqrt{\frac{\operatorname{det} g_{\rho}}{\operatorname{det} h}} \operatorname{dvol}_{h} \mathrm{~d} \rho \tag{2}
\end{equation*}
$$

Substitute into the volume integral below we have

$$
\begin{equation*}
\operatorname{Vol}_{g_{+}}(\{\rho>\epsilon\})=\int_{\{\rho>\epsilon\}} \operatorname{dvol}_{g_{+}}=\int_{\epsilon}^{\infty} \rho^{-n-1} \int_{M} \sqrt{\frac{\operatorname{det} g_{\rho}}{\operatorname{det} h}} \operatorname{dvol}_{h} \mathrm{~d} \rho . \tag{3}
\end{equation*}
$$

Example 2.1 (4D hyperbolic ball [8]). Let $\left(X^{n+1}, g_{+}\right)=\left(B^{4}, g_{B^{4}}\right)$. Recall from Example 1.6, we have

$$
\rho=\frac{1-|x|}{1+|x|}, h=\frac{1}{4} g_{S^{3}} \quad \text { and } \quad g_{\rho}=\frac{\left(1-\rho^{2}\right)^{2}}{4} g_{S^{3}} .
$$

Substitute into Equation (3) yields,

$$
\begin{aligned}
\operatorname{Vol}_{g_{+}}(\{\rho>\epsilon\}) & =\int_{\{\rho>\epsilon\}} \operatorname{dvol}_{g_{+}} \\
& =\int_{\epsilon}^{1} \rho^{-4} \int_{S^{3}} \sqrt{\frac{\operatorname{det} g_{\rho}}{\operatorname{det} h}} \operatorname{dvol}{ }_{h} \mathrm{~d} \rho \\
& =\int_{\epsilon}^{1} \rho^{-4} \int_{S^{3}}\left(1-\rho^{2}\right)^{3} \sqrt{\frac{\operatorname{det} g_{S^{3}}}{\operatorname{det} g_{S^{3}}}} \frac{1}{8} \mathrm{dvol}_{g_{S^{3}}} \mathrm{~d} \rho \\
& =\frac{\operatorname{Area}\left(S^{3}\right)}{8} \int_{\epsilon}^{1} \rho^{-4}\left(1-\rho^{2}\right)^{3} \mathrm{~d} \rho \\
& =\frac{\operatorname{Area}\left(S^{3}\right)}{8}\left(\frac{\left(1-\epsilon^{2}\right)^{3}}{3 \epsilon^{3}}-\frac{2\left(1-\epsilon^{2}\right)^{2}}{\epsilon}+\frac{8}{3}-4 \epsilon-\frac{4 \epsilon^{3}}{3}\right)
\end{aligned}
$$

Note that the constant term is $\frac{\operatorname{Area}\left(S^{3}\right)}{3}$, which does not depend on the choice of special bdf's.

We now decompose the volume above using the following the Fefferman-Graham expansion of g_{ρ} under Einstein condition (for detail see [5]):

$$
g_{\rho}= \begin{cases}g_{0}+g_{2} \rho^{2}+(\text { even powers })+g_{n-1} \rho^{n-1}+g_{n} \rho^{n}+\cdots & n \text { odd } \\ g_{0}+g_{2} \rho^{2}+(\text { even powers })+g_{n, 1} \log (\rho) \rho^{n-1}+g_{n} \rho^{n}+\cdots & n \text { even } .\end{cases}
$$

Taking $g_{0}=g$, we may write the square root part as

$$
\begin{equation*}
\sqrt{\frac{\operatorname{det} g_{\rho}}{\operatorname{det} g}}=1+v_{2} \rho^{2}+(\text { even powers })+v_{n} \rho^{n}+o\left(\rho^{n}\right) \tag{4}
\end{equation*}
$$

where v_{j} are locally determined functions on M and $v_{n}=0$ for n odd. Then the asymptotic expansion of $\operatorname{Vol}_{g_{+}}(\{\rho>\epsilon\})$ as $\epsilon \rightarrow 0$ is

$$
\begin{aligned}
& \operatorname{Vol}_{g_{+}}(\{\rho>\epsilon\}) \\
& = \begin{cases}c_{0} \epsilon^{-n}+c_{2} \epsilon^{-n+2}+(\text { odd powers })+c_{n-1} \epsilon^{-1}+V+o(1) & n \text { odd } \\
c_{0} \epsilon^{-n}+c_{2} \epsilon^{-n+2}+(\text { even powers })+c_{n-2} \epsilon^{-2}+L \log \frac{1}{\epsilon}+V+o(1) & n \text { even. }\end{cases}
\end{aligned}
$$

Here all the coefficients $c_{2 k}$ and L are integrals over M of local curvature expressions of g. Explicitly,

$$
c_{2 k}=\frac{1}{n-2 k} \int_{M} v_{2 k} \mathrm{dvol}_{g} \text { and } L=\int_{M} v_{n} \mathrm{dvol}_{g} .
$$

Definition 2.2. The renormalized volume ${ }^{R} \operatorname{Vol}(g)$ is defined to be the zero-th order term V in the above expansion.

Example 2.3.

1. Take $n=2$. One can compute $v_{2}=-\frac{R}{4}$ and by Gauss-Bonnet theorem we have

$$
L=\int_{M} v_{2} \mathrm{dvol}_{g}=-\pi \chi(M)
$$

The shows that L is an invariant, whereas ${ }^{R} \mathrm{Vol}$ is not:

$$
{ }^{R} \operatorname{Vol}(g)-{ }^{R} \operatorname{Vol}\left(e^{2 w} g\right)=\int-\frac{R w+w_{i} w^{i}}{4} \operatorname{dvol}_{g}
$$

2. For $n=3$ and g also asymptotically hyperbolic [4]. One can compute

$$
6^{R} \operatorname{Vol}_{g_{+}}=8 \pi^{2} \chi(M)-\frac{1}{4} \int_{M}|W|^{2} \operatorname{dvol}_{h}
$$

3. For $n=4$, we have

$$
L=\int_{M} v_{4} \operatorname{dvol}_{g}=\int_{M} \frac{\left(P_{i}^{i}\right)^{2}-P_{i j} P^{i j}}{8} \operatorname{dvol}_{g}=\frac{\pi^{2} \chi(M)}{2}-\int_{M} \frac{1}{64}|W|^{2} \mathrm{dvol}_{h}
$$

where W and P denote the Weyl and Schouten tensor respectively.

Remark 2.4.

- As it suggested in the above examples, for n even, the zero-th order term V depends on the choice of g (equivalently, depends on the choice of special bdf ρ), whereas the log term coefficient L does not.
- This dependence on ρ is mediated through $g_{n, 1}$ in the Fefferman-Graham expansion.

Theorem 2.5. If n is odd, then V is a conformal invariant. If n is even, then L is a conformal invariant.

Proof. (For detail see [5], Theorem 3.1). For odd n, take two special bdf ρ and $\hat{\rho}$, with corresponding metric g and \hat{g}. Consider the difference

$$
\operatorname{Vol}(\{\rho>\epsilon\})-\operatorname{Vol}(\{\hat{\rho}>\epsilon\})
$$

Step 1. Convert this difference into an integral over M cross an interval.
Recall Equation (1.2) which tells the relation between these two bdf's. One can solve ρ in terms of $\hat{\rho}$, and hence

$$
\operatorname{Vol}(\{\rho>\epsilon\})-\operatorname{Vol}(\{\hat{\rho}>\epsilon\})=\int_{M} \int_{(\epsilon, \hat{\epsilon})} \operatorname{dvol}_{g_{+}}
$$

Step 2. Now evaluate the above integral using Fefferman-Graham expansion.
Check that

$$
\int_{M} \int_{(\epsilon, \hat{\epsilon})} \operatorname{dvol}_{g_{+}}=\sum_{0 \leq j \leq n, j \text { even }} \int_{M} \frac{v_{j}(x)}{-n+j}\left(\text { even terms }^{1}\right) \operatorname{dvol}_{g}+o(1)
$$

Now let's compare the zero-th order term when $\epsilon \rightarrow 0$, Left hand side gives the difference ${ }^{R} \operatorname{Vol}(g)-{ }^{R} \operatorname{Vol}(\hat{g})$, whereas right hand side does not have any constant term.

2.2 Area renormalizaton

The renormalized area is defined using a similar idea. Let's briefly discuss it.
Consider a minimal surface $Y \subset X$ of dimension $k+1$. Set the boundary of Y to be $N=\bar{Y} \cap M$, which is a submanifold of M. Locally near a point in N, we take (x, u) to be the coordinate on M, with $N=\{u=0\}$. Let ρ be a bdf of M.

Now we may write Y as the graph $\{u=u(x, \rho)\}$. The asymptotics of $u(x, \rho)$ as $r \rightarrow 0$ is quite similar to the expansion we have for g_{ρ} :

$$
u= \begin{cases}u_{2} \rho^{2}+(\text { even powers })+u_{k+1} \rho^{k+1}+u_{k+2} \rho^{k+2}+\cdots & n \text { odd } \\ u_{2} \rho^{2}+(\text { even powers })+u_{k} \rho^{k}+u_{k, 1} \log (\rho) \rho^{k+2}+u_{k+2} \rho^{k+2}+\cdots & n \text { even }\end{cases}
$$

where u_{j} are locally determined as functions of x, except for u_{k+2}.
Similarly we have expansion of area from as

$$
\mathrm{dA}_{Y}=\rho^{-k-1}\left(1+A_{2} \rho^{2}+(\text { even powers })+A_{k} \rho^{k}+o\left(\rho^{k}\right)\right) \mathrm{dA}_{N} \mathrm{~d} \rho
$$

where a_{j} are locally determined functions on N and $a_{k}=0$ for k odd.
The asymptotic expansion of $\operatorname{Vol}_{g_{+}}(\{\rho>\epsilon\})$ as $\epsilon \rightarrow 0$ is

$$
\begin{aligned}
& \text { Area }(Y \cap\{\rho>\epsilon\}) \\
& = \begin{cases}b_{0} \epsilon^{-k}+b_{2} \epsilon^{-k+2}+(\text { even powers })+b_{k-1} \epsilon^{-1}+A+o(1) & n \text { odd } \\
b_{0} \epsilon^{-k}+b_{2} \epsilon^{-k+2}+(\text { even powers })+b_{k-2} \epsilon^{-2}+K \log \frac{1}{\epsilon}+A+o(1) & n \text { even }\end{cases}
\end{aligned}
$$

Here all the coefficients b_{i} and K are integrals over N of local curvature expressions of g. In particular, $K=\int_{N} a_{n} \mathrm{dA}_{N}$.

3 Integral renormalization

In this section we introduce another regularization and compare it with the renormalization we have from above. We will follow the discussion in [2].

The renormalization we used above is known as Hadamard regularization. This is used in the renormalize version of the Atiyah-Singer index theorem. In order to distinguish with another regularization, we denote it as

$$
{ }^{H} \mu=\underset{\epsilon=0}{\mathrm{FP}} \int_{\rho>\epsilon} \mu
$$

where μ stands for phg density (defined below).

Definition 3.1 (polyhomogenous). We call functions with an expansion of the form

$$
\sum_{k \geq k_{0}} \sum_{p=0}^{p_{k}} a_{k, p} x^{k} \log ^{p} x
$$

with $a_{k, p}$ smooth independent of x polyhomogenous (phg).
We will assume all the densities are phg.

3.1 Riesz regularization

Another approach we may take is the Riesz regularization. Given a bdf, we meromorphically extending the $\zeta_{\rho}(z)=\int \rho^{z} \mu$ and define the Riesz renomalization by the finite part at $z=0$,

$$
{ }^{R} \int \mu=\underset{z=0}{\mathrm{FP}} \zeta_{\rho}(z) .
$$

For concreteness, consider the case $\mu=\operatorname{dvol}_{g_{+}}$.
Take $\zeta_{\rho}(z)=\int_{X} \rho^{z} \operatorname{dvol}_{g}$. Note that this integral converges if and only if $\operatorname{Re}(z)>n-1$. So $\zeta_{\rho}(z)$ is holomorphic on a half plane, and it has a meromorphic continuation to \mathbb{C}. Consider $\operatorname{dvol}_{g}=f(\rho, y) \mathrm{dvol}_{g_{+}} \mathrm{d} \rho$ for some $f(\rho, y)$ which has a Taylor expansion. Let $a_{j}(y)$ be the coefficients in Taylor expansion so that we can break $\zeta_{\rho}(z)$ into three parts:

$$
\begin{aligned}
\zeta_{\rho}(z)= & \int_{\{\rho>\epsilon\}} \rho^{z} \operatorname{dvol}_{g_{+}}+\int_{M \times[0, \epsilon)}\left(f(\rho, y)-\sum_{j=0}^{N} a_{j}(y) \rho^{j}\right) \rho^{-n} \operatorname{dvol}_{g_{0}} \mathrm{~d} \rho \\
& +\int_{M \times[0, \epsilon)}\left(\sum_{j=0}^{N} a_{j}(y) \rho^{j}\right) \rho^{-n} \operatorname{dvol}_{g_{0}} \mathrm{~d} \rho=: I+I I+I I I .
\end{aligned}
$$

Here g_{0} is the metric appear in the expansion of g_{ρ}.
One may check $I I I$ has the form

$$
\sum_{j=0}^{N} \frac{A_{j}}{z+j-n+1} \epsilon^{z+j-n+1}
$$

and $I I=O\left(\rho^{N+1}\right)$ is holomorphic if $\operatorname{Re}(z+N+1-n)>-1$. Hence, a meromorphic continuation of $\zeta_{\rho}(z)$ exists, and the poles are at $-j+n-1, j \in Z_{\geq 0}$. So it make
sense to take the zero-th order term as the finite part and we define the renormalized volume using Riesz regularization as

$$
{ }^{R} \mathrm{Vol}=\mathrm{FP}_{z=0}^{\mathrm{FP}} \zeta_{\rho}(z) .
$$

As a note, this construction can be generalize to any phg densities, which gives the so-called renormalized integral.

We now compare the Hadmard and Riesz renormalizations on phg densities. For $k \neq-1$, we have

$$
\int_{[0, \epsilon)} \rho^{k} \log ^{p}(\rho) \mathrm{d} \rho={ }^{R} \int_{[0, \epsilon)} \rho^{k} \log ^{p}(\rho) \mathrm{d} \rho=\epsilon^{k+1} \sum_{l=0}^{p} c_{l} \log ^{p-l}(\rho) \epsilon
$$

For $k=-1$, these two integrals give different answers:

$$
\int_{[0, \epsilon)} \frac{\log ^{p} \rho}{\rho} \mathrm{~d} \rho=\frac{\log ^{p} \rho}{p+1} \epsilon \quad \text { whereas } \quad \int_{[0, \epsilon)}^{R} \frac{\log ^{p} \rho}{\rho} \mathrm{~d} \rho=0 .
$$

Hence

$$
{ }^{R} \operatorname{Vol}(X)=\underset{z=0}{\mathrm{FP}} \int_{X} \rho^{z} \operatorname{dvol}_{g_{+}}=\underset{\epsilon=0}{\mathrm{FP}} \int_{\{\rho>\epsilon\}} \mathrm{dvol}_{g_{+}} .
$$

4 Applications

We have already seen there is a link between the Euler characteristic $\chi(M)$ and the conformal invariant L defined in Section 1. Next let me state several result using the renormalized integral.

4.1 Pfaffian

On an even-dimensional asymptotically hyperbolic manifold \bar{X}, with $\bar{g}=\mathrm{d} \rho^{2}+g_{\rho}$ and $t r_{g_{0}} g_{n}=0$ (here g_{0} and g_{n} comes from the expansion of g_{ρ}), we have

$$
{ }^{R} \mathrm{Pff}=\chi(M) .
$$

This follows from applying the Chern-Gauss-Bonnet theorem for manifold with boundary:

$$
\int_{\{\rho>\epsilon\}} \operatorname{Pff}+\int_{\{\rho=\epsilon\}} I I=\chi(\{\rho>\epsilon\})=\chi(M) .
$$

The vanishing of the trace implies the second term in Chern-Guass-Bonnet vanishes.

4.2 Renormalized index theorem

Similarly, we may formulate the index theorem using renormalization [1]. The index theorem of a Dirac-type operator ∂ on a manifolds with boundary is

$$
\int A S-\frac{1}{2} \eta(M)=\mathcal{H}+\operatorname{ind}(\varnothing)
$$

where \mathcal{H} is some extended solution. ${ }^{2}$
Using renormalized integral, the above takes the form ${ }^{3}$

$$
\int A S-\frac{1}{2}{ }^{R} \eta(M)=\lim _{t \rightarrow \infty}{ }^{R} \operatorname{Str}\left(e^{-\left(t \tilde{\sigma}^{E}\right)^{2}}\right)
$$

If we assume further that $\operatorname{Im}\left(\partial^{2}\right)$ is closed, then the right hand side is $R^{\text {ind }}(\varnothing)$.
Analogous to the classical case, the renormalized Gauss-Bonnet theorem is a special case for the renormalized index theorem.

5 Generalization

5.1 Singular Yamabe metrics

One may generalize this volume renormalizaton process to singular Yamabe metrics [6], where Einstein condition is replaced by finding a defining function ρ of M such that $g_{+}=\rho^{-2} \bar{g}$ has constant scalar curvature. Using transition formula for scalar curvature under conformal change. One may transfer the problem into solving a PDF of a form similar to Equation (1.2).
Volume expansion has a similar pattern, and the of log term coefficient, if we call it as L again, is the obstruction for this singular Yamabe problem.

5.2 Other known results

Two other known results are: In dimension 4, there is a well defined renormalized volume if $\left(X, g_{+}\right)$is asymptotically hyperbolic (that is, $|\rho|_{\bar{g}}^{2}=1$ on M) and there is a totally geodesic compactification [7]. There is a Fefferman-Graham expansion for g_{ρ} if we replace the Einstein condition with Lovelock condition [3, Section 2.3], though results for volume renormalization seem to be unknown.

[^0]
References

[1] Pierre Albin, A renormalized index theorem for some complete asymptotically regular metrics: the Gauss-Bonnet theorem, 2005, avaliable online at https://arxiv.org/abs/math/0512167v1.
[2] Pierre Albin, Renormalizing curvature integrals on Poincaré-Einstein manifolds, 2009, avaliable online at https://arxiv.org/abs/math/0504161v1.
[3] Pierre Albin, Poincaré-Lovelock metrics on conformally compact manifolds, 2009, avaliable online at https://www.sciencedirect.com/science/article/pii/S0001870820301341.
[4] Sun Yung Alice Chang, Hao Fang and Robin Graham, A note on renormalized volume functionals, 1999, avaliable online at https://web.math.princeton.edu/~chang/09cfg.pdf.
[5] Robin Graham, Volume and area renormalization for conformally compact Einstein metrics, 1999, avaliable online at https://arxiv.org/abs/math/9909042v1.
[6] Robin Graham, Volume renormalization for singular Yamabe metrics, 2016, avaliable online at https://arxiv.org/abs/1606.00069v1.
[7] Shih-Tsai Feng, Volume renormalization for conformally compact asymptotically hyperbolic manifolds in dimension four, 2016, avaliable online at https://arxiv.org/abs/1606.00069v1.
[8] Aaron Tyrrell, Renormalized volume and area, 2021, avaliable online at https://curate.nd.edu/downloads/cv43nv96c40.

[^0]: ${ }^{2}$ This is denoted as h in [1]. To distinguish from the boundary metric, we use \mathcal{H}.
 ${ }^{3}$ One need to introduce Edge metrics and half distributions to make this statement precisely. This is beyond the scope of this notes. For detail see [1].

