
The Renormalized Volume of Conformally Compact
Einstein Manifolds

Xinran Yu

Oct 12, 2022

Abstract

In this talk, I will introduce the renormalized volume of a conformally com-
pact Einstein manifolds. The classical volume for any conformally compact
manifold is infinite, just like the case for a hyperbolic plane. We are interested
in finding an appropriate renormalization. It turns out that under Einstein con-
dition, the zeroth order term in the volume expansion of the complement of a
collar neighborhood gives a scalar conformal invariant. In the even-dimensional
case, this term is the renormalized volume.

This renormalization is initially motivated by the AdS/CFT correspondence
in physics. There are many interesting results of the renormalized volume of a
conformally compact manifold. For example, we can link the renormalization
to the Chern-Gauss-Bonnet formula and Branson’s Q-curvature. Furthermore,
we may define a renormalized integral and prove a renormalized version of the
Atiyah-Singer index theorem.
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1 Introduction

In the first two sections we follow the construction in Graham’s paper [5] to define the
renormalized volume . After that, we will see examples of linking the renomalization
with Gauss-Bonnet theorem.

1.1 Motivation

• Volume of conformally compact manifold is unbounded. Certain renormaliza-
tion is required to obtain a geometric invariants of conformally compact mani-
fold.

• In physics, one associate observableS to submanifolds N in M . Using a suitable
approximation, AdS/CFT correspondence in physics offers a way to compute
the expectation of an observable in terms of the volume of minimal submanifolds
Y whose boundary is N .

• The coefficient before log term (n odd case) gives a generalized version of the
Willmore functional (”the rigid sting action”) on conformal manifold.

• There is a renormalize version of the Atiyah-Singer index theorem.
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1.2 Set up

Through out this notes, we let X̄n+1 be a manifold with boundary, and denote X as
its interior, and M as its boundary.

Definition 1.1 (bdf). A boundary defining function (bdf) is a smooth function ρ on
X̄, which is positive on X and vanishes to the first order on M .

Definition 1.2 (conformally compact). A Riemannian metric g+ on X is called
conformally compact if for some choice of bdf ρ, ḡ := ρ2g+ extends continuously as a
metric to X̄.

Definition 1.3 (conformal infinity). Let g+ be Riemannian metric on X, and let h
be Riemannian metric on M . The conformal class [h] is called the conformal infinity
of g+, if for some choice of bdf ρ, ḡ := ρ2g+ extends continuously as a metric to X̄
and ḡ|M = h.

(X̄n+1, ḡ)

(X, g+) (M,h)

r

Figure 1: Manifold with boundary, bdf and conformal infinity

Example 1.4.

1. Hyperbolic plane. Consider H with the hyperbolic metric g+ =
dx2 + dy2

y2
. Here

the bdf is y, with conformal infinity h = dx2.

2. Hyperbolic ball. Consider Bn+1 with the hyperbolic metric

g+ = gBn+1 =
4
∑

i(dx
i)2

(1− |x|2)2
.

Here the bdf is
(1− |x|2)2

2
, with conformal infinity h =

∑
i(dx

i)2|Sn .

•
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From now on we assume g+ is Einstein, i.e. Ricg+ = −ng+. This condition determines
the bdf uniquely. Indeed, under conformal change we may write

Ricij = −|dρ|2ḡ n gij +O(ρ−3),

where |dρ|2ḡ = ḡijrirj. So the Einstein condition implies |dρ|2ḡ = 1. Then it follows
from the fact that for ρ = ewx, the PDE

1 = |dρ|2ḡ = |dx+ xdw|2ḡ + 2x(∇ḡx)w + x2|dw|2ḡ

has unique solution.

Definition 1.5. We call the conformally compact metric g on M asymptotically
hyperbolic if the bdf ρ satisfies |dρ|2ḡ = 1. And ρ is called a special bdf.

Consider a collar neighborhood M × [0, ϵ) of M , where the metric ḡ takes the normal
form gρ + dρ2. Hence

g+ = ρ−2(gρ + dρ2). (1)

(X̄n+1, ḡ)

(X, g+) (M,h)

M × [0, ϵ)

Figure 2: Collar neighborhood

Example 1.6 (Special bdf for hyperbolic ball). The special bdf for the hyper-

bolic metric gBn+1 is ρ =
1− |x|
1 + |x|

, and ḡ =
4
∑

i(dx
i)2

(1 + |x|)4
can be decomposed as

ḡ =
(1− ρ2)2

4
gSn︸ ︷︷ ︸

gρ

+ dρ2. •
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2 Volume and area renormalization

2.1 Volume renormalization

In this section we defined the renormalized volume.

Using Equation (1) the volume form dvolg+ is given by

dvolg+ = ρ−n−1

√
det gρ
deth

dvolhdρ. (2)

Substitute into the volume integral below we have

Volg+({ρ > ϵ}) =
∫
{ρ>ϵ}

dvolg+ =

∫ ∞

ϵ

ρ−n−1

∫
M

√
det gρ
deth

dvolhdρ. (3)

Example 2.1 (4D hyperbolic ball [8]). Let (Xn+1, g+) = (B4, gB4). Recall from
Example 1.6, we have

ρ =
1− |x|
1 + |x|

, h =
1

4
gS3 and gρ =

(1− ρ2)2

4
gS3 .

Substitute into Equation (3) yields,

Volg+({ρ > ϵ}) =
∫
{ρ>ϵ}

dvolg+

=

∫ 1

ϵ

ρ−4

∫
S3

√
det gρ
deth

dvolhdρ

=

∫ 1

ϵ

ρ−4

∫
S3

(1− ρ2)3

√
det gS3

det gS3

1

8
dvolgS3dρ

=
Area(S3)

8

∫ 1

ϵ

ρ−4(1− ρ2)3dρ

=
Area(S3)

8

(
(1− ϵ2)3

3ϵ3
− 2(1− ϵ2)2

ϵ
+

8

3
− 4ϵ− 4ϵ3

3

)
.

Note that the constant term is
Area(S3)

3
, which does not depend on the choice of

special bdf’s. •
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We now decompose the volume above using the following the Fefferman-Graham
expansion of gρ under Einstein condition (for detail see [5]):

gρ =

{
g0 + g2ρ

2 + (even powers) + gn−1ρ
n−1 + gnρ

n + · · · n odd

g0 + g2ρ
2 + (even powers) + gn,1 log(ρ)ρ

n−1 + gnρ
n + · · · n even.

Taking g0 = g, we may write the square root part as√
det gρ
det g

= 1 + v2ρ
2 + (even powers) + vnρ

n + o(ρn), (4)

where vj are locally determined functions on M and vn = 0 for n odd. Then the
asymptotic expansion of Volg+({ρ > ϵ}) as ϵ → 0 is

Volg+({ρ > ϵ})

=

{
c0ϵ

−n + c2ϵ
−n+2 + (odd powers) + cn−1ϵ

−1 + V + o(1) n odd

c0ϵ
−n + c2ϵ

−n+2 + (even powers) + cn−2ϵ
−2 + L log 1

ϵ
+ V + o(1) n even.

Here all the coefficients c2k and L are integrals over M of local curvature expressions
of g. Explicitly,

c2k =
1

n− 2k

∫
M

v2k dvolg and L =

∫
M

vn dvolg.

Definition 2.2. The renormalized volume VolR (g) is defined to be the zero-th order
term V in the above expansion.

Example 2.3.

1. Take n = 2. One can compute v2 = −R

4
and by Gauss-Bonnet theorem we have

L =

∫
M

v2 dvolg = −πχ(M).

The shows that L is an invariant, whereas VolR is not:

VolR (g)− VolR (e2wg) =

∫
−Rw + wiw

i

4
dvolg.
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2. For n = 3 and g also asymptotically hyperbolic [4]. One can compute

6 VolR
g+ = 8π2χ(M)− 1

4

∫
M

|W |2 dvolh.

3. For n = 4, we have

L =

∫
M

v4 dvolg =

∫
M

(P i
i )

2 − PijP
ij

8
dvolg =

π2χ(M)

2
−
∫
M

1

64
|W |2 dvolh,

where W and P denote the Weyl and Schouten tensor respectively.

•

Remark 2.4.

• As it suggested in the above examples, for n even, the zero-th order term V
depends on the choice of g (equivalently, depends on the choice of special bdf
ρ), whereas the log term coefficient L does not.

• This dependence on ρ is mediated through gn,1 in the Fefferman-Graham ex-
pansion.

Theorem 2.5. If n is odd, then V is a conformal invariant. If n is even, then L is
a conformal invariant.

Proof. (For detail see [5], Theorem 3.1). For odd n, take two special bdf ρ and ρ̂,
with corresponding metric g and ĝ. Consider the difference

Vol({ρ > ϵ})− Vol({ρ̂ > ϵ}).

Step 1. Convert this difference into an integral over M cross an interval.

Recall Equation (1.2) which tells the relation between these two bdf’s. One can solve
ρ in terms of ρ̂, and hence

Vol({ρ > ϵ})− Vol({ρ̂ > ϵ}) =
∫
M

∫
(ϵ,ϵ̂)

dvolg+ .

Step 2. Now evaluate the above integral using Fefferman-Graham expansion.

Check that∫
M

∫
(ϵ,ϵ̂)

dvolg+ =
∑

0≤j≤n,j even

∫
M

vj(x)

−n+ j
(even terms1) dvolg + o(1).

Now let’s compare the zero-th order term when ϵ → 0, Left hand side gives the
difference VolR (g) − VolR (ĝ), whereas right hand side does not have any constant
term.
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2.2 Area renormalizaton

The renormalized area is defined using a similar idea. Let’s briefly discuss it.

Consider a minimal surface Y ⊂ X of dimension k + 1. Set the boundary of Y to be
N = Ȳ ∩M , which is a submanifold of M . Locally near a point in N , we take (x, u)
to be the coordinate on M , with N = {u = 0}. Let ρ be a bdf of M .

Now we may write Y as the graph {u = u(x, ρ)}. The asymptotics of u(x, ρ) as r → 0
is quite similar to the expansion we have for gρ:

u =

{
u2ρ

2 + (even powers) + uk+1ρ
k+1 + uk+2ρ

k+2 + · · · n odd

u2ρ
2 + (even powers) + ukρ

k + uk,1 log(ρ)ρ
k+2 + uk+2ρ

k+2 + · · · n even

where uj are locally determined as functions of x, except for uk+2.

Similarly we have expansion of area from as

dAY = ρ−k−1
(
1 + A2ρ

2 + (even powers) + Akρ
k + o(ρk)

)
dANdρ,

where aj are locally determined functions on N and ak = 0 for k odd.

The asymptotic expansion of Volg+({ρ > ϵ}) as ϵ → 0 is

Area(Y ∩ {ρ > ϵ})

=

{
b0ϵ

−k + b2ϵ
−k+2 + (even powers) + bk−1ϵ

−1 + A+ o(1) n odd

b0ϵ
−k + b2ϵ

−k+2 + (even powers) + bk−2ϵ
−2 +K log 1

ϵ
+ A+ o(1) n even

Here all the coefficients bi and K are integrals over N of local curvature expressions

of g. In particular, K =

∫
N

andAN .

3 Integral renormalization

In this section we introduce another regularization and compare it with the renor-
malization we have from above. We will follow the discussion in [2].

The renormalization we used above is known as Hadamard regularization. This is
used in the renormalize version of the Atiyah-Singer index theorem. In order to
distinguish with another regularization, we denote it as∫H

µ = FP
ϵ=0

∫
ρ>ϵ

µ,

where µ stands for phg density (defined below).
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Definition 3.1 (polyhomogenous). We call functions with an expansion of the form

∑
k≥k0

pk∑
p=0

ak,px
k logp x

with ak,p smooth independent of x polyhomogenous (phg).

We will assume all the densities are phg.

3.1 Riesz regularization

Another approach we may take is the Riesz regularization. Given a bdf, we mero-
morphically extending the ζρ(z) =

∫
ρzµ and define the Riesz renomalization by the

finite part at z = 0, ∫R
µ = FP

z=0
ζρ(z).

For concreteness, consider the case µ = dvolg+ .

Take ζρ(z) =
∫
X
ρz dvolg. Note that this integral converges if and only if Re(z) > n−1.

So ζρ(z) is holomorphic on a half plane, and it has a meromorphic continuation to C.

Consider dvolg = f(ρ, y) dvolg+dρ for some f(ρ, y) which has a Taylor expansion. Let
aj(y) be the coefficients in Taylor expansion so that we can break ζρ(z) into three
parts:

ζρ(z) =

∫
{ρ>ϵ}

ρz dvolg+ +

∫
M×[0,ϵ)

(
f(ρ, y)−

N∑
j=0

aj(y)ρ
j

)
ρ−n dvolg0dρ

+

∫
M×[0,ϵ)

(
N∑
j=0

aj(y)ρ
j

)
ρ−n dvolg0dρ =: I + II + III.

Here g0 is the metric appear in the expansion of gρ.

One may check III has the form

N∑
j=0

Aj

z + j − n+ 1
ϵz+j−n+1,

and II = O(ρN+1) is holomorphic if Re(z+N +1−n) > −1. Hence, a meromorphic
continuation of ζρ(z) exists, and the poles are at −j + n − 1, j ∈ Z≥0. So it make
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sense to take the zero-th order term as the finite part and we define the renormalized
volume using Riesz regularization as

VolR = FP
z=0

ζρ(z).

As a note, this construction can be generalize to any phg densities, which gives the
so-called renormalized integral.

We now compare the Hadmard and Riesz renormalizations on phg densities. For
k ̸= −1, we have∫H

[0,ϵ)

ρk logp(ρ) dρ =

∫R
[0,ϵ)

ρk logp(ρ) dρ = ϵk+1

p∑
l=0

cl log
p−l(ρ)ϵ.

For k = −1, these two integrals give different answers:∫H

[0,ϵ)

logp ρ

ρ
dρ =

logp ρ

p+ 1
ϵ whereas

∫R
[0,ϵ)

logp ρ

ρ
dρ = 0.

Hence

VolR (X) = FP
z=0

∫
X

ρz dvolg+ = FP
ϵ=0

∫
{ρ>ϵ}

dvolg+ .

4 Applications

We have already seen there is a link between the Euler characteristic χ(M) and the
conformal invariant L defined in Section 1. Next let me state several result using the
renormalized integral.

4.1 Pfaffian

On an even-dimensional asymptotically hyperbolic manifold X̄, with ḡ = dρ2 + gρ
and trg0gn = 0 (here g0 and gn comes from the expansion of gρ), we have∫R

Pff = χ(M).

This follows from applying the Chern-Gauss-Bonnet theorem for manifold with bound-
ary: ∫

{ρ>ϵ}
Pff +

∫
{ρ=ϵ}

II = χ({ρ > ϵ}) = χ(M).

The vanishing of the trace implies the second term in Chern-Guass-Bonnet vanishes.
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4.2 Renormalized index theorem

Similarly, we may formulate the index theorem using renormalization [1]. The index
theorem of a Dirac-type operator ð on a manifolds with boundary is∫

AS − 1

2
η(M) = H + ind(ð),

where H is some extended solution. 2

Using renormalized integral, the above takes the form 3∫R
AS − 1

2
ηR (M) = lim

t→∞
StrR (e−(tðE)2).

If we assume further that Im(ð2) is closed, then the right hand side is indR (ð).

Analogous to the classical case, the renormalized Gauss-Bonnet theorem is a special
case for the renormalized index theorem.

5 Generalization

5.1 Singular Yamabe metrics

One may generalize this volume renormalizaton process to singular Yamabe metrics
[6], where Einstein condition is replaced by finding a defining function ρ of M such
that g+ = ρ−2ḡ has constant scalar curvature. Using transition formula for scalar
curvature under conformal change. One may transfer the problem into solving a
PDF of a form similar to Equation (1.2).

Volume expansion has a similar pattern, and the of log term coefficient, if we call it
as L again, is the obstruction for this singular Yamabe problem.

5.2 Other known results

Two other known results are: In dimension 4, there is a well defined renormalized
volume if (X, g+) is asymptotically hyperbolic (that is, |ρ|2ḡ = 1 on M) and there is a
totally geodesic compactification [7]. There is a Fefferman-Graham expansion for gρ
if we replace the Einstein condition with Lovelock condition [3, Section 2.3], though
results for volume renormalization seem to be unknown.

2This is denoted as h in [1]. To distinguish from the boundary metric, we use H.
3One need to introduce Edge metrics and half distributions to make this statement precisely.

This is beyond the scope of this notes. For detail see [1].
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