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Abstract

Maxwell’s equations reveal the fundamental relations between electricity
and magnetism. They can be formulated in various equivalent ways under
the idea of unification. In this talk, I will formulate Maxwell’s equations using
differential forms and tensor calculus. We will see there are at least two benefits
of tensorizing spacetime, electric-magnetic field, and energy-momentum: this
provides a covariant formulation of Maxwell’s equation; and, we obtain a crucial
term that appears in Einstein field equation of general relativity.
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1 Introduction

In this section, we formulate Maxwell’s equations from a different point of view and
introduce tensor calculus and Riemannian metric. More precisely, we will do the
following

Differential geometric formulation of Maxwell’s equations on R3 (vector calculus)

Tensor calculus formulation of Maxwell’s equations

Hodge-Maxwell theorem

Maxwell’s equations in curved spacetime

unify spacetime; electric and magnetic field

identify E,B with forms and using Hodge star

perturbing the metric tenosr

1.1 A brief history

1784-1786 Coulomb did experiments on electric repulsion and attraction (Coulomb force)

1837 Faraday studied Coulomb’s law and discovered electro-magnetic induction (elec-
tric field lines)

1855, 1861, 1864 Maxwell formulated Faraday’s experiments using mathematical language

1880 Heaviside introduced permittivity ϵ0
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2 Differential geometric formulation

We will start with the differential form formulation of Maxwell’s equations in R3.

Gauss’ law: ∇ · E =
ρ

ϵ0
(E)

∇ ·B = 0 (M)

Faraday’s law of induction: ∇∧ E = −∂B

∂t
(MI)

Ampère’s circuital law: ∇∧B = µ0J +
1

c2
∂E

∂t
(EI)

Here

• ρ = charge density

• ϵ0 =
1

4π
· 1

9 · 109 Fm−1, the permittivity of free space

• J = current density

• µ0 =
4π

107
NA−2, the permeability of free space

• µ0ϵ0 =
1

c2

2.1 Meaning of the equations

• Equation (E): electric charges cause electric fields.

• Equation (M): magnetic monopole does not exist.

• Equation (MI): changing magnetic field induces electric fields.

• Equation (EI): electric current causes magnetic field and changing electric field
induces magnetic fields.

Remark 2.1. The second term, which is known as Maxwell’s addition, is a correction
to resolve compatibility issue with the continuity equation. Let’s explore this briefly.
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2.2 Maxwell’s addition

The continuity equation (also known as electric charge conservation) says

∂ρ

∂t
= −∇ · J.

Hence for any volume V , the total charge Q =

∫

V

ρ dV satisfies

∂Q

∂t
=

∫

∂V

−∇ · J dA.

Note that Equation (M) and Equation (MI) are consistent by taking divergence;
whereas Equation (E) and Equation (EI) without Maxwell’s addition both hold only
if J = 0. Maxwell’s addition is designed to get rid of this restriction.

Moreover, if we move time derivatives to the left hand side and rearrange the equations
into two groups.

homogeneous inhomogeneous

∇ ·B = 0 ∇ · E =
ρ

ϵ0

∇∧ E +
∂B

∂t
= 0 ∇∧B − 1

c2
∂E

∂t
= µ0J

The reason for rearrangement will become clear when we convert Maxwell’s equation
into tensor form.

3 Tensor calculus formulation

3.1 Levi-Civita symbol and 4-vectors

Consider the Levi-Civita symbol

ϵijk =





1 (i j k) even permutations of (1 2 3)

−1 (i j k) odd permutations of (1 2 3)

0 otherwise
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It has properties

(v × w)k = ϵijkv
jwk.

ϵijaϵakl = δikδjl − δilδjk =⇒ ϵijkϵijk = 6.

Take the spacetime coordinate xµ = (ct, x) and define ∂µ = (
1

c
∂t,∇). (We need

to multiply t by speed of light c to match the unit of space). Rotations in R3 are
generalized by Lorentz transformations in spacetime. Let

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Then ηµν∂µ∂ν = − 1

c2
∂2
t +∆. (∆ with plus sign).

In this section, we will only consider flat spacetime, which is also known as Minkowski
spacetime. It seems not necessary to introduce ηµν , yet the benefit is that we may
perturb ηµν by a symmetric 2-tensor hµν and all the above terms work in curved
spacetime.

Note that −1 in ηµν reflects the crucial difference between ct and x. A coordinate
change purely in space corresponds to the usual rotation in R3, e.g.




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 .

y

x

y′y′

x′x′

θ

θ

Figure 1: Lorentz transformation on (x, y)-plane
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Whereas coordinate change in ct and x corresponds to




cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1


 .

ct

x

x′

ct′

x = ctx = ct

θ

θ

Figure 2: Lorentz transformation on (ct, x)-plane

Definition 3.1. We define the 4-vector current Jµ and field strength tensor Fµν
1 to

be

Jµ = (ρc, J),

F µν =




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


 .

Note that

F0i = −Ei

c
,

Fij = ϵijkBk.

1This is an antisymmetric (0, 2)-tensor

6



3.2 Maxwell’s equations in tensor form

Using 4-vectors we may formulate the Maxwell’s equations as

F[µν,γ] = 0 or ϵµναβFαβ,µ = 0. (M*)

F µν
,µ = µ0J

ν , (E*)

If we introduce 1
2
Gµν = ϵµναβFαβ, then we can simplify Equation (M*) further.

homogeneous inhomogeneous

Gµν
,µ = 0 F µν

,µ = µ0J
ν

Homogeneity suggests that Equation (M) and (MI) comes from the one on left and
Equation (E) and (EI) come from the one on right.

Proposition 3.2. The second equation with µ, ν, γ = i, j, k gives Equation (M) and
with µ, ν, γ = 0, j, k gives Equation (MI).

Proof. Indeed, multiplying the equation by ϵijk and using −2Bi = ϵijkF
jk we obtain

0 = ϵijkF[ij,k] = 3ϵijkFij,k = 3 · (2∇ ·B).

For the second half of the statement, starting with F0j,k + Fk0,j + Fjk,0 = 0. Now
substitute the values of Fjk gives

1

c

(
− Ej,k + Ek,j + ϵkjl

∂Bl

∂t

)
= 0.

Multiplying the equation by ϵijk we obtain

0 =
(2∇∧ E)i

c
+

2

c

∂Bi

∂t
.
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3.3 4-potentials

Definition 3.3. We define the 4-potential Aµ to be

Aµ = (
ϕ

c
,A).

Here

• ϕ = electrostatic potential, defined by E = −∇ϕ.

• A = magnetic vector potential, defined in magnetostatics by B = ∇∧ A.

• In electrostatics, there is no time dependence, so ∇ ∧ E = 0. This means we
can write E as gradient of some function which is the potential. Similar for B.

Using 4-potential
F µν = ∂µAν − ∂νAµ

and using Maxwell’s equation we obtain

B = ∇∧ A,

E = −∇ϕ− ∂A

∂t
.

Note that 4-potential is transformed as

Ãµ = Aµ + ∂µλ.

We can check

F̃ µν = ∂µÃν − ∂νÃµ = ∂µ(Aν + ∂νλ)− ∂ν(Aµ + ∂µλ)

= ∂µAν + ∂µ∂νλ− ∂νAµ − ∂ν∂µλ = ∂µAν − ∂νAµ = F µν

3.4 Energy-momentum conservation

From physics we have

Energy density: ρen =
1

2
ϵ0E

2 +
1

2µ0

B2,

energy flux: Jen =
1

µ0

E ∧B.

This implies
∂ρen
∂t

= −∇Jen.

We now introduce the energy-momentum tensor, which plays a key role in the Einstein
field equation.
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Definition 3.4. We define energy-momentum tensor T µν to be

T µν =
1

µ0

FαµF ν
α − 1

4µ0

ηµνFαβFαβ.

When we restrict to space, T ij is known as the Maxwell stress tensor.

Remark 3.5.

1. Note that T 00 = ρen, T
0i = J i

en and T µν
,µ = 0.

2. The Newtonian energy is given by integrating T 00:
∫
V
T 00dx, whose value is

proportional to the first components of the 4-potential pµ = (
E

c
, p). So entries

of T µν has physical dimensions of energy density.

3. Computing the energy of a stationary time-like object (e.g. a massive particle)
gives E = mc2.

Proposition 3.6. The divergence of the non-gravitational stress–energy T µν
,µ van-

ishes. This means non-gravitational energy and momentum are conserved.

Proof.

T µν
,µ =

1

µ0

FαµF ν
α ,µ − 1

2µ0

Fαβ,νFαβ

=
1

2µ0

Fαµ(F ν
α ,µ − F ν

µ ,α )−
1

2µ0

Fαµ,νFαµ

=
1

2µ0

Fαµ(F ν
α ,µ + F ν

µ,α ) +
1

2µ0

Fαµ,νFµα

=
1

2µ0

Fαµ(F ν
α ,µ + F ν

µ,α + F ν
µα, )

= 0. (by Maxwell’s second equation)

Remark 3.7. Note that T µν is trace free, so one may also use (T µνTµν),µ = 0 to
show the proposition.

So far Maxwell’s equation get simplify via unification, we have seen

• Lorentz’s unification of spacetime,

• Maxwell’s unification of electric-magnetic field,

• It remains unknown if we may unify: vacuum energy, Higgs boson and quantum
gravity into this picture.
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4 Hodge-Maxwell Theorem

We may formulate Maxwell’s equation using Hodge theory by identifying E and B
as two forms (here I use Einstein summation). For sake of time, I’ll merely list the
results.

E = Eidx
i,

B = B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1 +B3dx
1 ∧ dx2

J = Jµdx
µ,

Let F = E ∧ dx0 + B be the Faraday 2-form. One can check B = ∗(dx0 ∧ E) and
dx0 ∧ E = − ∗B. 2 We have,

Gµν
,ν = 0 ⇐⇒ dF = 0. (M**)

F µν
,ν = µ0J

ν ⇐⇒ d ∗ F = ∗µ0J, (E**)

and the energy-momentum tensor is given by the same formula in Definition 3.4.

5 In curved spacetime

The benefit of having tensor calculus and hodge star operator is we can generalize
Maxwell’s equations to a curved spacetime. As suggested earlier, we do this by
perturbation gµν = ηµν + hµν . Then F µν = ∂µAν − ∂νAµ (in Minkowski space) is
replaced by F µν = ∇µAν −∇νAµ [4, Section 3] and Maxwell’s equations become

homogeneous inhomogeneous

∇[αFβγ] = 0 ∇µF
µν = µ0J

ν

Aside, the process of replacing the partial derivatives with covariant derivatives is
similar to how we generalize the Laplace type operator. From a Mathematical per-
spective, it might be more useful to look at the later case.

2I am not going to specify what Hodge star means. One can find detail in [1, Section 3] or [2]
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geometric in Euclidean
∆Euc = −∑

i ∂i∂i = −div ◦ grad

geometric in general, Laplace-Beltrami

∆ = − 1√
|g|

∂i

(
gij

√
|g|∂j

)

connection, covariant
∆∇ = −tr(∇2)

d∗d = − ∗ d∗

Bochner
∆B = ∇∗∇

Hodge
∆H = δd+ dδ = (d+ δ)2

Spin
∆Spin = D2

Witten
∆W = δtdt + dtδt = (dt + δt)

2

non trivial Riemannian metric

using covariant derivatives
as 0-forms

using adjoint
deRham cohomology

Weitzenböck formula ∆H = ∆B − R (Bochner for 1-form)

Lichnerowicz formula
∆Spin−∆∇= 1

4 scal

conformal change of metric via

Morse function f, dt=e−tfdetf
∇W=∇H+ht+|df |2t2

Figure 3: Generalized laplacian
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6 Einstein field equation

We now have the terminology needed for the Einstein field equation. This equation
generalizes Newton’s law of universal gravitation.

F =
GMm

r2
.

Newton’s law fails to predict the behavior of photons, since they have no mass. Due
to time limitation of the talk, I will write down the equation without a proof.

Ricµν −
1

2
scal gµν =

8πG

c4
Tµν .

Here

• G is the gravitational constant

• Tµν energy-momentum tensor which is extremely large

•
8πG

c4
= 2.068× 10−43 sec2

kg ·m
Note that the left hand side consists of curvature and metric, and the right hand side
consists of gravity, energy and momentum. We may interpret this equation as gravity
curves the spacetime; curved spacetime tells how particles behave in gravitation field.

Remark 6.1.

1. The Einstein-Maxwell equations of gravitation and electromagnetism consist of
the Einstein field equation with ∇µT

µν = 0.

2. One may add the effect of cosmological constant and obtain generalized version
of the above equation

Ricµν −
1

2
scal gµν + Λgµν = κTµν .

This extra term won’t effect ∇µTµν since ∇µgµν = 0.

Note that we have Einstein condition when the right hand side vanishes. This says
Minkowski metric is a trivial solution of the Einstein field equation. There are also
non trivial solutions: the Schwarzschild and Kerr metrics [3, Section 6].
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Remark 6.2.

1. Non trivial solutions contains singularities at a finite distance from the source.
These are called event horizons.

2. At infinity, singularities are normalized, so spacetime looks flat far away and
Maxwell field Tµν dominates the behavior.
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