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Abstract

The ambient obstruction tensor is a higher even-dimensional generalization
of the Bach tensor. Analogous to the Bach tensor, the obstruction tensor
arises from the first variation of a particular conformal invariant, the integral
of Branson’s (Q-curvature. It inherits interesting properties such as conformal
invariance and vanishing for conformal Einstein metrics. From another point
of view, this tensor obstructs the existence of a smooth power series solution
for a Poincaré metric, hence the name ambient obstruction. In this talk, I will
go through the later formulation of the obstruction tensor, its basic properties,
and its link to the Q-curvature.
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1 Introduction

In 4 dimensional conformal geometry, the Weyl tensor W is a conformal invariant, and
the corresponding integral [ |[IW]?, gives a global conformal invariant. First variation
on the metric g gives rise to the so-called Bach tensor:

J W dins = [ W+t [ (B.gy iy +0(E)
In local coordinates,
B;; = PleVikjl + Vkvkpij - Vkvipjk-

One can check that the Bach tensor is a trace free, symmetric conformally invariant
2-tensor (see Table 1, left).

A higher even-dimensional generalization of the Bach tensor B is the ambient obstruc-
tion tensor . Analogously, O arise from first variation of -curvatures. Another
formulation, which motivates where the name “obstruction” comes from, suggests that
O obstructs the existence of a smooth power series solution for the ambient metric
associated to a given conformal structure. This approach leads to the Fefferman-
Graham expansion, which can be used to construct renormalized volume [3]. We will
follow the later formulation.

Bach tensor Bj; ambient obstruction tensor O;;
4-dim n-dim, n > 4 even
first variation of [ |[W|*du first variation of [ Q du
conformally invariant conformally invariant
trace-free trace-free
symmetric 2 tensor symmetric 2 tensor
vanishes for conformally Einstein metrics vanishes for conformally Einstein metrics
involving 4 derivatives of the metric tensor | involving n derivatives of the metric tensor

Table 1: Properties of Bach and obstruction tensors

Let us fix the following notations.

Conformal structure
e M - manifold with smooth conformal structure [h], dim M =n > 3.

e X - manifold with boundary M, dim X =n + 1.



e ¢ - conformally compact metrics on X with conformal infinity [A].

x - smooth boundary defining function, z%g smooth on X with z%g|rys € [h]

Lo
g= ;(daz‘ + hy).

(M, h)

(X", g)

Figure 1: Manifold with boundary, bdf and conformal infinity

2 The ambient obstruction tensor

In this section, we will solve the equation Ric, = —ng using formal power series
expansion. The main result is the following theorem.

Theorem 2.1 ([4]).
1. If n > 4 even, there is a metric g with
o 22g smooth
e [h] is its conformal infinity
e Ric, + ng = O(z"?).

This metric g is unique mod O(x""2) up to a diffeomorphism ¢ of X with
oy = id.
2. We define the obstruction tensor

T 2"2(n/2 — 1)12
0= cntf(x2 (Ric, + ng)) ‘TM’ = n—2 '

The tensor O is well defined: it is independent of the choice of g on M. Fur-
thermore,



(a) Oij = An/272<.Pij7kk — Pkkzj) +l.o.t
(b) O; = O,Oij7] =0

(c) Oy is conformally invariant of weight 2 —n, i.e. @ij = 6(2_n)f0ij when
hij = €2fhij.

(d) O;; =0 for metrics that are conformal to Einstein metric.

2.1 Power series solution of Ric, = —ng

Given a conformally compact metric g which is also asymptotically Einstein, meaning
that

Ric, + ng = O(z™"),

1
where g = —2(dx2 + h) in a collar neighborhood of M.
T

(M, h)
(X1 g) M x [0,¢€)

Figure 2: Collar neighborhood

Denote E' = Ric, + ng. Assume there is a formal power series solution
h = ho + hyz + hoa® + - -

to the asymptotic equation F = O(z™!).

To determine the coefficents h;, we represent E in terms of the boundary metric h.
Recall the Riemannian curvature tensor R is given by Christoffel symbols'

) ) 5 5 5
Rop,” = 0L, = 0al'p)” + 1,/ Ty, — FM“I‘M :

'We use Greek letter for indices 0, - - - n, Latin letters for indices 1,--- ,n.



Computing the Chirstoffel symbol of ¢ in terms of the Chirstoffel symbol of h [,
Lemma 2.1] and substituting into £ gives

2wEy; = —ahll + xR b, — gh“h;lhgj + (n— Vbl + WM Rhy + 20Ric, (1)
1

1 1 1
Eo = _ghklh;l + ththQh;ph;q + %hklhél (3)

We solve E = O(z"2) by induction.
Step 0. Beginning with an initial solution hy = h.

Step 1. Assume we know h to the (s — 1)-th order and solve for hs. Differentiating
Equation (1) s — 1 times results the equation

7, _,(2zEy) = (n — 5)05hi; + KO huhij + Lot
Knowing LHS, we may solve for hs. Indeed, since the operator
Sym*(T'M) — Sym*(TM)
mij = (0 — s)mij + Wby
is invertible when s is away from n, 2n. This completes the inductive step.

Remark 2.2. The induction ends at s = n, so we may solve h mod O(z"2) by
requiring E;; = O(2"?). One may check E;p = O(z"™') and Eyp = O(2"?) via
Bianchi identity and induction. This gives a formal solution to (n — 2)-th order.

2.2 Properties of O;;

Checking part 2(b)-2(d) of Theorem 2.1 is straightforward (see [4, Theorem 2.1] for
detail). We now focus on computing the principle part of O;;. By definition, O;;
corresponds to the coefficient for "2 in E;;. So restricting (n — 1)-th derivative of
2z E;; to boundary gives the answer.

Remark 2.3.

1. O;; lives on the boundary. So we differentiate 2o F;; instead of F;; in order to
avoid blow up when restricting to x = 0.

2. Parity: setting x = 0 for Equation (1) leads to vanishing of axh‘x:o' Induction
gives 0;h|xzo =0 for odd s.



3. Computing 6323h‘x10 = —P,;; is straightforward.
4. Covariant derivative comes from

1
§8ﬂv(hik,jk + hjk,z‘k - hij,k:k - hkk,ij)

1 1
= axRic‘mzo = éA(hg) —0"0(hy) — §Hess(tr(h2)).

850 RiCij =

Example 2.4. [4]
o For n =4, O;; = B;j.
e For n =6,
Oy; =B, " — 2Wyiu BM — 4P, * By + 8P*Cijyiy

—4CK! Oy + 20.MCipy + 4P’€,€,l C(ij)l — AW PR, P™.

3 Link to Q-curvature

Remark 3.1.
1. @ itself is not a pointwise conformal invariant, but its integral is.
2. O,; obstructs a smooth formal power series solutions for a Poincaré metric

(linking @ to O).

volume expansion of

Poincaré metric log term f Qdp

lvariation

obstruction tensor

The above construction is called the Fefferman-Graham expansion. It also works for
odd dimension and there is no obstruction at (n — 2)-th order:

o ho + hap® + (even powers) + hy,_1p" L + hpp™ + -+ n odd
N ho + hep?® + (even powers) + hy, 1 log(p)p™ ™t + hyp™ +--+  n even.

This implies a power series expansion for the volume form thus for the volume [3].
For n even,

1
Vol,({z > €}) = coe ™™ + coe "™ + (even powers) + c, 9e >+ Llog—+V + o(1),
€
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where L = [}, v™ dyy, and v™ is the coefficient for = of the volume form, is a
conformal invariant.

Theorem 3.2. Let h(t) be a I-parameter family of metrics on a compact manifold
M of even dimension n > 4, then

(22 9 ij
t:O/MQd,u (=1) 2 /MOU at‘tzoh an

Recall that the leading order term for O is A"™272(P, k¥ — P.*.). The fact that

. k ij
@= T202n— 1)

9
ot

A" 'R +l.o.t [2] would convince you of the above theorem.

1
Example 3.3. In dimension 4, the Q-curvature is 6<_AR + R? — 3|Ric|?). Chern-

Gauss-Bonnet says

1 1
X0 = o [ (RuP-aiRicP 1) dn — [ Qdp=seOn-; [ Widu
3272 Ju M 4 Jy
So the obstruction tensor is the Bach tensor. °
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