The Ambient Obstruction Tensor

Xinran Yu

Feb 3, 2023

Abstract

The ambient obstruction tensor is a higher even-dimensional generalization of the Bach tensor. Analogous to the Bach tensor, the obstruction tensor arises from the first variation of a particular conformal invariant, the integral of Branson's Q-curvature. It inherits interesting properties such as conformal invariance and vanishing for conformal Einstein metrics. From another point of view, this tensor obstructs the existence of a smooth power series solution for a Poincaré metric, hence the name ambient obstruction. In this talk, I will go through the later formulation of the obstruction tensor, its basic properties, and its link to the Q-curvature.

Contents

1 Introduction 2
2 The ambient obstruction tensor 3
2.1 Power series solution of $\mathrm{Ric}_{g}=-n g$ 4
2.2 Properties of $\mathcal{O}_{i j}$ 5
3 Link to Q-curvature 6

1 Introduction

In 4 dimensional conformal geometry, the Weyl tensor W is a conformal invariant, and the corresponding integral $\int|W|^{2}$, gives a global conformal invariant. First variation on the metric g gives rise to the so-called Bach tensor:

$$
\int|W|_{g(t)}^{2} d \mu_{g(t)}=\int|W|_{g}^{2} d \mu_{g}+t \int\left\langle B, g^{\prime}\right\rangle_{g} d \mu_{g}+O\left(t^{2}\right)
$$

In local coordinates,

$$
B_{i j}=P^{k l} W_{i k j l}+\nabla^{k} \nabla_{k} P_{i j}-\nabla^{k} \nabla_{i} P_{j k} .
$$

One can check that the Bach tensor is a trace free, symmetric conformally invariant 2-tensor (see Table 1, left).

A higher even-dimensional generalization of the Bach tensor B is the ambient obstruction tensor \mathcal{O}. Analogously, \mathcal{O} arise from first variation of Q-curvatures. Another formulation, which motivates where the name "obstruction" comes from, suggests that \mathcal{O} obstructs the existence of a smooth power series solution for the ambient metric associated to a given conformal structure. This approach leads to the FeffermanGraham expansion, which can be used to construct renormalized volume [3]. We will follow the later formulation.

Bach tensor $B_{i j}$	ambient obstruction tensor $\mathcal{O}_{i j}$
4-dim	n-dim, $n \geq 4$ even
first variation of $\int\|W\|^{2} d \mu$	first variation of $\int Q d \mu$
conformally invariant	conformally invariant
trace-free	trace-free
symmetric 2 tensor	symmetric 2 tensor
vanishes for conformally Einstein metrics	vanishes for conformally Einstein metrics
involving 4 derivatives of the metric tensor	involving n derivatives of the metric tensor

Table 1: Properties of Bach and obstruction tensors

Let us fix the following notations.

Conformal structure

- M - manifold with smooth conformal structure $[h], \operatorname{dim} M=n \geq 3$.
- X - manifold with boundary $M, \operatorname{dim} X=n+1$.
- g - conformally compact metrics on X with conformal infinity $[h]$.
x - smooth boundary defining function, $x^{2} g$ smooth on X with $\left.x^{2} g\right|_{T M} \in[h]$

$$
g=\frac{1}{x^{2}}\left(d x^{2}+h_{x}\right) .
$$

Figure 1: Manifold with boundary, bdf and conformal infinity

2 The ambient obstruction tensor

In this section, we will solve the equation $\mathrm{Ric}_{g}=-n g$ using formal power series expansion. The main result is the following theorem.

Theorem 2.1 ([4]).

1. If $n \geq 4$ even, there is a metric g with

- $x^{2} g$ smooth
- [h] is its conformal infinity
- $\mathrm{Ric}_{g}+n g=O\left(x^{n-2}\right)$.

This metric g is unique $\bmod O\left(x^{n-2}\right)$ up to a diffeomorphism ϕ of X with $\left.\phi\right|_{M}=\mathrm{id}$.
2. We define the obstruction tensor

$$
O=\left.c_{n} \mathrm{tf}\left(x^{2-n}\left(\operatorname{Ric}_{g}+n g\right)\right)\right|_{T M}, \quad c_{n}=\frac{2^{n-2}(n / 2-1)!^{2}}{n-2}
$$

The tensor \mathcal{O} is well defined: it is independent of the choice of g on M. Furthermore,
(a) $\mathcal{O}_{i j}=\Delta^{n / 2-2}\left(P_{i j, k}{ }^{k}-P_{k}{ }^{k}{ }_{i j}\right)+$ l.o.t
(b) $\mathcal{O}_{i}{ }^{i}=0, \mathcal{O}_{i j}{ }^{j},=0$
(c) $\mathcal{O}_{i j}$ is conformally invariant of weight $2-n$, i.e. $\tilde{\mathcal{O}}_{i j}=e^{(2-n) f} \mathcal{O}_{i j}$ when $\tilde{h}_{i j}=e^{2 f} h_{i j}$.
(d) $\mathcal{O}_{i j}=0$ for metrics that are conformal to Einstein metric.

2.1 Power series solution of $\operatorname{Ric}_{g}=-n g$

Given a conformally compact metric g which is also asymptotically Einstein, meaning that

$$
\operatorname{Ric}_{g}+n g=O\left(x^{-1}\right)
$$

where $g=\frac{1}{x^{2}}\left(d x^{2}+h\right)$ in a collar neighborhood of M.

Figure 2: Collar neighborhood

Denote $E=\operatorname{Ric}_{g}+n g$. Assume there is a formal power series solution

$$
h=h_{0}+h_{1} x+h_{2} x^{2}+\cdots
$$

to the asymptotic equation $E=O\left(x^{-1}\right)$.
To determine the coefficents h_{i}, we represent E in terms of the boundary metric h. Recall the Riemannian curvature tensor R is given by Christoffel symbols ${ }^{1}$

$$
R_{\alpha \beta \gamma}{ }^{\delta}=\partial_{\beta} \Gamma_{\alpha \gamma}{ }^{\delta}-\partial_{\alpha} \Gamma_{\beta \gamma}{ }^{\delta}+\Gamma_{\alpha \gamma}{ }^{\mu} \Gamma_{\beta \mu}{ }^{\delta}-\Gamma_{\beta \gamma}{ }^{\mu} \Gamma_{\alpha \mu}{ }^{\delta} .
$$

[^0]Computing the Chirstoffel symbol of g in terms of the Chirstoffel symbol of $h[1$, Lemma 2.1] and substituting into E gives

$$
\begin{align*}
2 x E_{i j} & =-x h_{i j}^{\prime \prime}+x h^{k l} h_{i k}^{\prime} h_{j l}^{\prime}-\frac{x}{2} h^{k l} h_{k l}^{\prime} h_{i j}^{\prime}+(n-1) h_{i j}^{\prime}+h^{k l} h_{k l}^{\prime} h_{i j}+2 x \mathrm{Ric}_{h} \tag{1}\\
E_{i 0} & =\frac{1}{2} h^{k l}\left(\nabla_{l} h_{i k}^{\prime}-\nabla_{i} h_{k l}^{\prime}\right) \tag{2}\\
E_{00} & =-\frac{1}{2} h^{k l} h_{k l}^{\prime}+\frac{1}{4} h^{k l} h^{p q} h_{k p}^{\prime} h_{l q}^{\prime}+\frac{1}{2 x} h^{k l} h_{k l}^{\prime} \tag{3}
\end{align*}
$$

We solve $E=O\left(x^{n-2}\right)$ by induction.
Step 0. Beginning with an initial solution $h_{0}=h$.
Step 1. Assume we know h to the $(s-1)$-th order and solve for h_{s}. Differentiating Equation (1) $s-1$ times results the equation

$$
\left.\partial_{x}^{s-1}\right|_{x=0}\left(2 x E_{i j}\right)=(n-s) \partial_{x}^{s} h_{i j}+h^{k l} \partial_{x}^{s} h_{k l} h_{i j}+\text { l.o.t. }
$$

Knowing LHS, we may solve for h_{s}. Indeed, since the operator

$$
\begin{aligned}
\operatorname{Sym}^{2}(T M) & \rightarrow \operatorname{Sym}^{2}(T M) \\
\eta_{i j} & \mapsto(n-s) \eta_{i j}+h^{k l} \eta_{k l} h_{i j}
\end{aligned}
$$

is invertible when s is away from $n, 2 n$. This completes the inductive step.
Remark 2.2. The induction ends at $s=n$, so we may solve $h \bmod O\left(x^{n-2}\right)$ by requiring $E_{i j}=O\left(x^{n-2}\right)$. One may check $E_{i 0}=O\left(x^{n-1}\right)$ and $E_{00}=O\left(x^{n-2}\right)$ via Bianchi identity and induction. This gives a formal solution to $(n-2)$-th order.

2.2 Properties of $\mathcal{O}_{i j}$

Checking part 2(b)-2(d) of Theorem 2.1 is straightforward (see [4, Theorem 2.1] for detail). We now focus on computing the principle part of $\mathcal{O}_{i j}$. By definition, $\mathcal{O}_{i j}$ corresponds to the coefficient for x^{n-2} in $E_{i j}$. So restricting $(n-1)$-th derivative of $2 x E_{i j}$ to boundary gives the answer.

Remark 2.3.

1. $\mathcal{O}_{i j}$ lives on the boundary. So we differentiate $2 x E_{i j}$ instead of $E_{i j}$ in order to avoid blow up when restricting to $x=0$.
2. Parity: setting $x=0$ for Equation (1) leads to vanishing of $\left.\partial_{x} h\right|_{x=0}$. Induction gives $\left.\partial_{x}^{s} h\right|_{x=0}=0$ for odd s.
3. Computing $\left.\partial_{x}^{2} h\right|_{x=0}=-P_{i j}$ is straightforward.
4. Covariant derivative comes from

$$
\begin{aligned}
\partial_{x} \operatorname{Ric}_{i j} & =\frac{1}{2} \partial_{x}\left(h_{i k, j}^{k}+h_{j k, i}^{k}-h_{i j, k}{ }^{k}-h_{k}{ }^{k}{ }_{, i j}\right) \\
\left.\Longrightarrow \partial_{x} \operatorname{Ric}\right|_{x=0} & =\frac{1}{2} \Delta\left(h_{2}\right)-\delta^{*} \delta\left(h_{2}\right)-\frac{1}{2} \operatorname{Hess}\left(\operatorname{tr}\left(h_{2}\right)\right) .
\end{aligned}
$$

Example 2.4. [4]

- For $n=4, \mathcal{O}_{i j}=B_{i j}$.
- For $n=6$,

$$
\begin{aligned}
\mathcal{O}_{i j}= & B_{i j, k}{ }^{k}-2 W_{k i j l} B^{k l}-4 P_{k}^{k} B_{i j}+8 P^{k l} C_{(i j) k, l} \\
& -4 C_{i}^{k l} C_{l j k}+2 C_{i}^{k l} C_{j k l}+4 P_{k, l}^{k} C_{(i j)}^{l}-4 W_{k i j l} P_{m}^{k} P^{m l} .
\end{aligned}
$$

3 Link to Q-curvature

Remark 3.1.

1. Q itself is not a pointwise conformal invariant, but its integral is.
2. $\mathcal{O}_{i j}$ obstructs a smooth formal power series solutions for a Poincaré metric (linking Q to \mathcal{O}).

obstruction tensor
The above construction is called the Fefferman-Graham expansion. It also works for odd dimension and there is no obstruction at $(n-2)$-th order:

$$
h_{x}= \begin{cases}h_{0}+h_{2} \rho^{2}+(\text { even powers })+h_{n-1} \rho^{n-1}+h_{n} \rho^{n}+\cdots & n \text { odd } \\ h_{0}+h_{2} \rho^{2}+(\text { even powers })+h_{n, 1} \log (\rho) \rho^{n-1}+h_{n} \rho^{n}+\cdots & n \text { even } .\end{cases}
$$

This implies a power series expansion for the volume form thus for the volume [3]. For n even,

$$
\operatorname{Vol}_{g}(\{x>\epsilon\})=c_{0} \epsilon^{-n}+c_{2} \epsilon^{-n+2}+(\text { even powers })+c_{n-2} \epsilon^{-2}+L \log \frac{1}{\epsilon}+V+o(1)
$$

where $L=\int_{M} v^{(n)} d \mu_{h}$ and $v^{(n)}$ is the coefficient for x^{-1} of the volume form, is a conformal invariant.

Theorem 3.2. Let $h(t)$ be a 1-parameter family of metrics on a compact manifold M of even dimension $n \geq 4$, then

$$
\left.\frac{\partial}{\partial t}\right|_{t=0} \int_{M} Q d \mu=\left.(-1)^{n / 2} \frac{n-2}{2} \int_{M} \mathcal{O}_{i j} \frac{\partial}{\partial t}\right|_{t=0} h^{i j} d \mu
$$

Recall that the leading order term for \mathcal{O} is $\Delta^{n / 2-2}\left(P_{i j, k}{ }^{k}-P_{k}{ }_{k}{ }_{i j}\right)$. The fact that $Q=-\frac{1}{2(2 n-1)} \Delta^{n-1} R+$ l.o.t [2] would convince you of the above theorem.
Example 3.3. In dimension 4, the Q-curvature is $\frac{1}{6}\left(-\Delta R+R^{2}-3|\operatorname{Ric}|^{2}\right)$. Chern-Gauss-Bonnet says
$\chi(M)=\frac{1}{32 \pi^{2}} \int_{M}\left(|\operatorname{Rm}|^{2}-4|\operatorname{Ric}|^{2}+R^{2}\right) d \mu \Longrightarrow \int_{M} Q d \mu=8 \pi^{2} \chi(M)-\frac{1}{4} \int_{M}|W|^{2} d \mu$.
So the obstruction tensor is the Bach tensor.

References

[1] Pierre Albin, Poincaré-Lovelock metrics on conformally compact manifolds, 2009, avaliable online at https://www.sciencedirect.com/science/article/pii/S0001870820301341.
[2] S.-Y. Alice Chang, Michael Eastwood, Bent Ørsted and Pual C. Yang, What is Q-curvature?, 2006, avaliable online at https://web.math.princeton.edu/~chang/whatisQ.pdf.
[3] Robin Graham, Volume and area renormalization for conformally compact Einstein metrics, 1999, avaliable online at https://arxiv.org/abs/math/9909042v1.
[4] Robin Graham and Kengo Hirachi, The Ambient Obstructio Tensor and Qcurvature, 2004, avaliable online at https://arxiv.org/abs/math/0405068.

[^0]: ${ }^{1}$ We use Greek letter for indices $0, \cdots n$, Latin letters for indices $1, \cdots, n$.

