
The Ambient Obstruction Tensor

Xinran Yu

Feb 3, 2023

Abstract

The ambient obstruction tensor is a higher even-dimensional generalization
of the Bach tensor. Analogous to the Bach tensor, the obstruction tensor
arises from the first variation of a particular conformal invariant, the integral
of Branson’s Q-curvature. It inherits interesting properties such as conformal
invariance and vanishing for conformal Einstein metrics. From another point
of view, this tensor obstructs the existence of a smooth power series solution
for a Poincaré metric, hence the name ambient obstruction. In this talk, I will
go through the later formulation of the obstruction tensor, its basic properties,
and its link to the Q-curvature.
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1 Introduction

In 4 dimensional conformal geometry, the Weyl tensorW is a conformal invariant, and
the corresponding integral

∫
|W |2, gives a global conformal invariant. First variation

on the metric g gives rise to the so-called Bach tensor:∫
|W |2g(t) dµg(t) =

∫
|W |2g dµg + t

∫
⟨B, g′⟩g dµg +O(t2).

In local coordinates,

Bij = P klWikjl +∇k∇kPij −∇k∇iPjk.

One can check that the Bach tensor is a trace free, symmetric conformally invariant
2-tensor (see Table 1, left).

A higher even-dimensional generalization of the Bach tensor B is the ambient obstruc-
tion tensor O. Analogously, O arise from first variation of Q-curvatures. Another
formulation, which motivates where the name “obstruction” comes from, suggests that
O obstructs the existence of a smooth power series solution for the ambient metric
associated to a given conformal structure. This approach leads to the Fefferman-
Graham expansion, which can be used to construct renormalized volume [3]. We will
follow the later formulation.

Bach tensor Bij ambient obstruction tensor Oij

4-dim n-dim, n ≥ 4 even
first variation of

∫
|W |2 dµ first variation of

∫
Qdµ

conformally invariant conformally invariant
trace-free trace-free

symmetric 2 tensor symmetric 2 tensor
vanishes for conformally Einstein metrics vanishes for conformally Einstein metrics
involving 4 derivatives of the metric tensor involving n derivatives of the metric tensor

Table 1: Properties of Bach and obstruction tensors

Let us fix the following notations.

Conformal structure

• M - manifold with smooth conformal structure [h], dimM = n ≥ 3.

• X - manifold with boundary M , dimX = n+ 1.

2



• g - conformally compact metrics on X with conformal infinity [h].

x - smooth boundary defining function, x2g smooth on X with x2g|TM ∈ [h]

g =
1

x2
(dx2 + hx).

(X̄n+1, ḡ)

(X, g+) (M,h)

x

Figure 1: Manifold with boundary, bdf and conformal infinity

2 The ambient obstruction tensor

In this section, we will solve the equation Ricg = −ng using formal power series
expansion. The main result is the following theorem.

Theorem 2.1 ([4]).

1. If n ≥ 4 even, there is a metric g with

• x2g smooth

• [h] is its conformal infinity

• Ricg + ng = O(xn−2).

This metric g is unique mod O(xn−2) up to a diffeomorphism ϕ of X with
ϕ|M = id.

2. We define the obstruction tensor

O = cntf
(
x2−n(Ricg + ng)

)∣∣∣
TM

, cn =
2n−2(n/2− 1)!2

n− 2
.

The tensor O is well defined: it is independent of the choice of g on M. Fur-
thermore,
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(a) Oij = ∆n/2−2(P k
ij,k − P k

k ij ) + l.o.t

(b) O i
i = 0,O j

ij, = 0

(c) Oij is conformally invariant of weight 2 − n, i.e. Õij = e(2−n)fOij when
h̃ij = e2fhij.

(d) Oij = 0 for metrics that are conformal to Einstein metric.

2.1 Power series solution of Ricg = −ng

Given a conformally compact metric g which is also asymptotically Einstein, meaning
that

Ricg + ng = O(x−1),

where g =
1

x2
(dx2 + h) in a collar neighborhood of M .

(X̄n+1, ḡ)

(X, g+) (M,h)

M × [0, ϵ)

Figure 2: Collar neighborhood

Denote E = Ricg + ng. Assume there is a formal power series solution

h = h0 + h1x+ h2x
2 + · · ·

to the asymptotic equation E = O(x−1).

To determine the coefficents hi, we represent E in terms of the boundary metric h.
Recall the Riemannian curvature tensor R is given by Christoffel symbols1

R δ
αβγ = ∂βΓ

δ
αγ − ∂αΓ

δ
βγ + Γ µ

αγ Γ δ
βµ − Γ µ

βγ Γ δ
αµ .

1We use Greek letter for indices 0, · · ·n, Latin letters for indices 1, · · · , n.
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Computing the Chirstoffel symbol of g in terms of the Chirstoffel symbol of h [1,
Lemma 2.1] and substituting into E gives

2xEij = −xh′′
ij + xhklh′

ikh
′
jl −

x

2
hklh′

klh
′
ij + (n− 1)h′

ij + hklh′
klhij + 2xRich (1)

Ei0 =
1

2
hkl(∇lh

′
ik −∇ih

′
kl) (2)

E00 = −1

2
hklh′

kl +
1

4
hklhpqh′

kph
′
lq +

1

2x
hklh′

kl (3)

We solve E = O(xn−2) by induction.

Step 0. Beginning with an initial solution h0 = h.

Step 1. Assume we know h to the (s − 1)-th order and solve for hs. Differentiating
Equation (1) s− 1 times results the equation

∂s−1
x

∣∣
x=0

(2xEij) = (n− s)∂s
xhij + hkl∂s

xhklhij + l.o.t.

Knowing LHS, we may solve for hs. Indeed, since the operator

Sym2(TM) → Sym2(TM)

ηij 7→ (n− s)ηij + hklηklhij

is invertible when s is away from n, 2n. This completes the inductive step.

Remark 2.2. The induction ends at s = n, so we may solve h mod O(xn−2) by
requiring Eij = O(xn−2). One may check Ei0 = O(xn−1) and E00 = O(xn−2) via
Bianchi identity and induction. This gives a formal solution to (n− 2)-th order.

2.2 Properties of Oij

Checking part 2(b)-2(d) of Theorem 2.1 is straightforward (see [4, Theorem 2.1] for
detail). We now focus on computing the principle part of Oij. By definition, Oij

corresponds to the coefficient for xn−2 in Eij. So restricting (n − 1)-th derivative of
2xEij to boundary gives the answer.

Remark 2.3.

1. Oij lives on the boundary. So we differentiate 2xEij instead of Eij in order to
avoid blow up when restricting to x = 0.

2. Parity: setting x = 0 for Equation (1) leads to vanishing of ∂xh
∣∣
x=0

. Induction

gives ∂s
xh

∣∣
x=0

= 0 for odd s.
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3. Computing ∂2
xh

∣∣
x=0

= −Pij is straightforward.

4. Covariant derivative comes from

∂xRicij =
1

2
∂x(h

k
ik,j + h k

jk,i − h k
ij,k − h k

k ,ij)

=⇒ ∂xRic
∣∣
x=0

=
1

2
∆(h2)− δ∗δ(h2)−

1

2
Hess(tr(h2)).

Example 2.4. [4]

• For n = 4, Oij = Bij.

• For n = 6,

Oij =B k
ij,k − 2WkijlB

kl − 4P k
k Bij + 8P klC(ij)k,l

− 4Ck l
i Cljk + 2C kl

i Cjkl + 4P k
k,lC

l
(ij) − 4WkijlP

k
mPml.

•

3 Link to Q-curvature

Remark 3.1.

1. Q itself is not a pointwise conformal invariant, but its integral is.

2. Oij obstructs a smooth formal power series solutions for a Poincaré metric
(linking Q to O).

volume expansion of
Poincaré metric

log term
∫
Qdµ

obstruction tensor

variation

The above construction is called the Fefferman-Graham expansion. It also works for
odd dimension and there is no obstruction at (n− 2)-th order:

hx =

{
h0 + h2ρ

2 + (even powers) + hn−1ρ
n−1 + hnρ

n + · · · n odd

h0 + h2ρ
2 + (even powers) + hn,1 log(ρ)ρ

n−1 + hnρ
n + · · · n even.

This implies a power series expansion for the volume form thus for the volume [3].
For n even,

Volg({x > ϵ}) = c0ϵ
−n + c2ϵ

−n+2 + (even powers) + cn−2ϵ
−2 + L log

1

ϵ
+ V + o(1),
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where L =
∫
M
v(n) dµh and v(n) is the coefficient for x−1 of the volume form, is a

conformal invariant.

Theorem 3.2. Let h(t) be a 1-parameter family of metrics on a compact manifold
M of even dimension n ≥ 4, then

∂

∂t

∣∣∣
t=0

∫
M

Qdµ = (−1)n/2
n− 2

2

∫
M

Oij
∂

∂t

∣∣∣
t=0

hij dµ

Recall that the leading order term for O is ∆n/2−2(P k
ij,k − P k

k ij ). The fact that

Q = − 1

2(2n− 1)
∆n−1R + l.o.t [2] would convince you of the above theorem.

Example 3.3. In dimension 4, the Q-curvature is
1

6
(−∆R + R2 − 3|Ric|2). Chern-

Gauss-Bonnet says

χ(M) =
1

32π2

∫
M

(|Rm|2−4|Ric|2+R2) dµ =⇒
∫
M

Qdµ = 8π2χ(M)− 1

4

∫
M

|W |2 dµ.

So the obstruction tensor is the Bach tensor. •
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