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Abstract

Lovelock metrics serve as one possible extension of Einstein’s gravitational
theory into higher dimensions. An essential feature of Lovelock metrics lies in
their ability to incorporate non-linear dependencies on second-order derivatives
of the metric.

Several properties associated with Einstein metrics find their extensions
within the realm of Lovelock metrics. For instance, these metrics are critical to
the generalized Einstein-Hilbert action, providing a way to derive the Lovelock
tensors. Furthermore, a generalization of the DeTurck trick enables us to apply
of elliptic regularities within a modified harmonic gauge. Thus, it is demon-
strated that asymptotically hyperbolic Lovelock metrics exhibit a comparable
behavior within the collar neighborhood of the boundary.
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1 Introduction

The aim of these notes is to provide an introduction to the Lovelock metrics, an exten-
sion of the well-established Einstein metric. The focus is on presenting fundamental
aspects concerning Lovelock metrics, thereby establishing a basic understanding of
their properties and implications.

Let us begin by considering a compact Riemannian manifold M . The well-known
Einstein field equations in vacuum boils down to the finding the tensors Aij that
adhere to the following properties, as originally outlined by Lovelock [Lov71],

(a) Aij is symmetric;

(b) Aij is a polynomial in terms of the metric tensor g and its first two coordinate
derivatives

Aij = Aij(gab; gab,c, gab,cd);

(c) Aij is divergence free, reflecting the conservation of energy and momentum in
a gravitational field;

(d) Aij is linear in the second derivatives of g, and the field equations in vacuum
takes the form Aij = 0.

The resulting tensor A is a linear combination of the Einstein tensor E and metric g.
This leads to the well-known Einstein field equation in dimension 4.

Remark 1.1.

1. We emphasize that the properties outlined in (a)-(d) do not see the dimension,
offering a consistent framework regardless of the manifold’s dimension. On the
other hand, it is natural to consider spaces with higher dimensions in certain
fields of physics. For instance, some quantum gravity models operate within 10
or 11 dimensions. So a more comprehensive framework that can accommodate
the complexities of these additional dimensions is welcomed.

2. Lovelock theory focuses on second-order derivatives of the metric. Nevertheless,
higher derivative gravity is also considered in literature. These higher derivative
theories, however, lay beyond the scope of our purpose.
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If we allow dependency of higher-dimensional analogues of the Ricci curvature, and
avoid the introduction of higher derivatives that could lead to instabilities. That is,
we modify assertion (d) to a nonlinear dependence of ∂2g. Then the resulting Aij

takes the form ∑
q≥0

aqδ
ii1···i2q
jj1···i2qR

j1j2
i1i2

· · ·Rj2q−1j2q
i2q−1i2q

.

As a convention, when q = 0, we have a0δ
i
j and when 2q > m, δ = 0.

Remark 1.2. In the context of four dimensions, relaxing assertion (d) yields no novel
insights. It can be demonstrated that A collapses into linear combinations of the Ricci
curvature Ric and the metric g. The least dimension required here is 6.

This suggests us to define the Lovelock tensor as a generalization of the Einstein
tensor to be

Fg(α, β) =
∑

αq

(
Ric(2q)g − λ(2q)g

)
+ βq

(
scal(2q)g − (n+ 1)λ(2q)

)
g,

where Ric(2q)g is the generalization of Ricci curvature

Ric(2q)g = C 2q−1
g (Rq

g), equivalently Ric
(2q)
ij = δ

i1···i2q
ij2···j2qR

j2
i1i2j

Rj3j4
i3i4

· · ·Rj2q−1j2q
i2q−1i2q

.

and scal(2q) is its trace.

Definition 1.3 (Lovelock metric). A Lovelock metric g is such that Fg(α, β) = 0
when βq = −αq

2q
. (In this case we abbreviate Fg(α) = Fg(α, β).)

Example 1.4.

• Einstein metric. If α = (1, 0, · · · , 0), then Fg(α) = E.

• Lovelok-4. scal(2)g = scalg, scal
(4)
g = 6(|R|2g − 4|Ric|2g + scal2g).

• Constant sectional curvature metric. For a hyperbolic metric h, Ric
(2q)
h =

λ(2q)h, scal
(2q)
h = (n+ 1)λ(2q) and E

(2q)
h = (1− (n+ 1)/2q)λ(2q)h.

•
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2 Properties of Lovelock metrics

Let us denote h2q =
scal

(2q)
g

(2q)!
. 1 Here we list several properties in Lovelock metrics.

1. Chern-Gauss-Bonnet [AW43]. For a even dimensional closed Riemannian man-
ifold M , say dimM = 2k,

χ(M) =
1

(2π)kk!

∫
M

h2k dµg.

As an example, in dimension 4,

h4 =
1

4

(
|Rm|2 − 4|Ric|2 + | scal |2

)
χ(M) =

1

32π2

∫
M

|Rm|2 − 4|Ric|2 + | scal |2 dµg =
1

8π2

∫
M

h4 dµg.

2. Variational property [Lab08]. The generalized Einstein-Hilbert action

H2q : g 7→
∫
M

h2q dµg

is differentiable and its first variation is

H ′
2q(h) =

1

2
⟨T (2q), h⟩,

where T (2q) = h2qg − 1
(2q−1)!

Ric(2q)g . Restricting to unit volume metrics, the
critical points of the above functional are Lovelock metrics.

Einstein Lovelock
E = Ric + ng = 0 Fg(α, β) = 0 with βq = −αq

2q

E diffeomorphism invariant Fg(α, β) diffeomorphism invariant

divGg(Ricg) = 0 divG
(2q)
g (Ric(2q)g ) = 0

Einstein g critical points of
∫
M
scal Lovelock g critical points of

∫
M
scal(2q)

formal phg expansion near boundary formal phg expansion near boundary
For h− gSn ∈ C2,α,∃ Einstein filling (Bn+1, g) For h− gSn ∈ C2,α,∃ Lovelock filling (Bn+1, g)

Table 1: Properties of Einstein and Lovelock metrics

1Note that the Lipschitz-Killing curvature ℓ̃2q in [Alb20] is related to h2q by ℓ̃2q = h2q/q!.
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3. Yamabe problem. The Yamabe problem aims to find conformal metrics with
constant scalar curvature. While the generalized version of the problem, which
involves seeking a conformal metric with a constant scalar-2q curvature, remains
open, there are recent developments of the closely related σk-Yamabe problem.
This involves k-admissible metrics where the role of the scalar curvature is re-
placed by σk(P ),2 and the Yamabe invariant replaced by the k-maximal volume
[GV04] or the k-Yamabe constant [STjW05].

4. Metric expansion [Alb20]. Let us bring in the conformal geometry framework.
SupposeXn+1 be a Riemannian manifold with boundaryM and let x denotes its
boundary defining function. A conformally compact Lovelock metric g = dx2+h

x2

is asymptotically hyperbolic, hence near the boundary

Rmg = −1

2
g2 +O(x−3).

Then the conformal infinity h has a formal polyhomogeneous expansion in a
neighborhood of M as follows

hx =

{
h0 + h2x

2 + (even powers) + hn−1x
n−1 + hnx

n + · · · n odd

h0 + h2x
2 + (even powers) + hn,1 log(x)x

n−1 + hnx
n + · · · n even.

5. Ambient obstruction [GL91]. Failure of having a smooth expansion can be
measured by the obstruction tensor O = x2−n tf(Fg(α, β))|x=0.

3 The DeTurck trick for Lovelock tensors

Similar to the Einstein tensors, Lovelock tensors are generally not elliptic. The De-
Turck’s trick serves as a powerful tool for handling Einstein tensors. The method
simplifies Einstein tensors by introducing an auxiliary metric to manage the challeng-
ing terms that hinder ellipticity. Application of the DeTurck trick can be extended
to Lovelock tensors, as elaborated in [Alb20].

The motivation behind this lies in the expression of Ricci curvature in harmonic
coordinates. In particular, we have

Ricg = −g−1(∂2 ? g) + l.o.t

gijΓ k
ij = 0

=⇒ (Ricg)jl = −gik ∂2
ik gjl + l.o.t.

2Here σk(P ) means the k-th order symmetric function in the eigenvalues of the Schouten tensor

P . For a locally conformally flat metric, scal(2q)g = σ2q(g
−1P ).
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The right hand side is of Laplace type.

Now, let’s consider modified harmonic coordinates defined by gijΠ k
ij = 0, where Π k

ij

represents the Christoffel symbol of an auxiliary metric t. This new gauge condition
exhibits a similar effect, enabling us to express the Ricci curvature as an operator
similar to Laplace of g. As a result, we can define the modified Einstein tensor

Q(g, t) = Ricg + ng − δ∗g

(
gt−1δgGg(t)

)
.3.

This approach can be extended to an asymptotically hyperbolic Lovelock tensor,
where the linearizations of Ricci-(2q) and scalar-(2q) curvatures are well understood.
Specifically, the first variation of a Lovelock tensor is, up to higher-order terms in x, a
linear combination of Laplace type operators, along with a term involving the gauge
condition:(

DF(α,β)(g)
)
(r)

=−
∑
q

λ(2q)

2n(n− 1)

[
q(n− 1)

(
αq + (n+ 1)βq

)
(∆g + 2n)(ug) + (n− 2q + 1)αq(∆g − 2)(r0)

]
+ (c1δ

∗
g + c2gδg)δgGg(r) +O(xN+1).

To extract a Laplace type operator, we define the modified Lovelock tensor

Q(α,β)(g, t) = F(α,β)(g)− Φ(α,β)(g, t), (1)

where t is an auxiliary metric and

Φ(α,β)(g, t)

=(c1δ
∗
g + c2gδg)

(
gt−1Bg(t)

)
=−

∑
q

λ(2q)

n(n− 1)

[
αq(n− 2q + 1)δ∗g −

(
αq(q − 1) + βq(n− 1)q

)
gδg

](
gt−1δgGg(t)

)
.

The use of the DeTurck trick holds crucial significance in analyzing metric regularity
of conformally compact Einstein metrics. Applying the DeTurck trick, we obtain
a gauge-modified Einstein equation that is elliptic. Consequently, the usual elliptic

3Gg is the gravatational opeator and δg = −divg
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regularity argument can be applied. One expect a comparable line of reasoning can
be extended to the examination of Lovelock metrics, though the inherent nonlinearity
embedded within the Lovelock tensors the proof more challenging.

Implementing the help of implicit function theorem, one can generalize existence
result of Einstein filling near hyperbolic ball. That is, given a conformal infinity h
near the standard metric on Sn, there is corresponding Lovelock filling.
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[AW43] Carl B. Allendoerfer and André Weil. The Gauss-Bonnet theorem for Rie-
mannian polyhedra. Transactions of the American Mathematical Society,
53(1):101–129, 1943.

[GL91] C.Robin Graham and John M Lee. Einstein metrics with prescribed con-
formal infinity on the ball. Advances in Mathematics, 87(2):186–225, 1991.

[GV04] Matthew J Gursky and Jeff A Viaclovsky. Volume comparison and the
σk-Yamabe problem. Advances in Mathematics, 187(2):447–487, 2004.

[Lab08] M.-L. Labbi. Variational properties of the Gauss–Bonnet curvatures. Cal-
culus of Variations & Partial Differential Equations, 32(2):175 – 189, 2008.

[Lov71] David Lovelock. The Einstein Tensor and Its Generalizations. Journal of
Mathematical Physics, 12(3):498–501, 10 1971.

[STjW05] Weimin Sheng, Neil S Trudinger, and Xu jia Wang. The Yamabe problem
for higher order curvatures, 2005.

7


	Introduction
	Properties of Lovelock metrics
	The DeTurck trick for Lovelock tensors

