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Abstract

The fractional Laplacian is a generalization of the classical Laplacian op-
erator to non-integer orders. It was first introduced in Grušin’s 1960 work on
spectral theory. This operator can be expressed through various formulations,
including Fourier transforms and extensions of the Dirichlet problem for the
Poisson equation to a conformally covariant boundary value problem. Notably,
the latter formulation contributes to the theory of Sobolev spaces, elucidating
a precise higher-order Sobolev trace inequality.
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1 Introduction

These notes seek to provide a introductory understanding of the fractional Laplacian
through multiple approaches. First, we will explore a pointwise definition of the frac-
tional Laplacian. Then, we will focus on the Fourier transform, which tells differential
operators act on functions as integrals, thus offers a more intuitive extension of the
classical Laplacian using principal symbols. Finally, we will delve into an equivalent
formulation involving an extension problem within the framework of Poisson operators
and scattering theory, offering an alternative perspective on the fractional Laplacian.
There are more ways to define the fractional Laplacian, Kwaśnicki [Kwa17] has a nice
survey discussing those.

Throughout the notes we will be dealing with the Schwartz functions. We recall that
the Schwartz functions are rapidly decreasing functions such that

S (Rn) = {f ∈ C∞(Rn) ∶ ∥f∥α,β = sup
x∈Rn
∣xα∂βf(x)∣ <∞,∀α,β}.

It is easy to check that C∞c (Rn) ⊂S (Rn) ⊂ C∞(Rn).

We introduce the first definition of the fractional Laplacian. Note that the classical
Laplacian can be written in terms of averaging integral

−f ′′(x) = lim
y→0

2f(x) − f(x + y) − f(x − y)

y2

= 6 lim
y→0

f(x) −Ayf(x)

y2
, where Ayf(x) =

1

2y ∫
x+y

x−y
f(t)dt.

In n-dimension, one uses Ayf(x) =
1

ωnrn ∫B(x,r) f(y)dy to get

−∆f(x) = 2(n + 2) lim
y→0

f(x) −Ayf(x)

y2
.

This leads to the first pointwise definition. 1

Definition 1.1 (Pointwise definition). For γ ∈ (0,1),

(−∆)γf(x) =
c(n, γ)

2 ∫
2f(x) − f(x + y) − f(x − y)

∣y∣n+2γ
dy.

1Minus sign is needed since ∆ denotes the analyst Laplacian.
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Remark 1.2.

1. As γ tends to 1, the operator approaches the classical Laplacian. It is an-
ticipated that (−∆)γ exhibits behaviors closely resembling −∆. Similarly, as
γ tends to 0, the operator approaches the identity map. Consequently, one
expects (−∆)γ to display behaviors akin to those of the identity operator id.

2. This can also be written as a single integral. For γ ∈ (0,1),

(−∆)γf(x) = Cn,γP.V.∫
Rn

f(x) − f(ξ)

∣x − ξ∣n+2γ
dξ.2

2 Fourier transform

Recall that the Fourier transform F ∶ L1(Rm)→ L∞(Rn)

F(f)(ξ) =
1

(2π)n/2 ∫Rn
f(x)e−iξxdx

has the following properties on Schwartz space.

Proposition 2.1.

1. For f ∈S (Rm),

F(∂xj
f)(ξ) = iξjF(f)(ξ), ∂ξj(F(f))(ξ) = −iF(ξjf)(ξ);

2. On Schwartz space Fourier transform F ∶S (Rn
x)→S (Rn

ξ ) has a formal adjoint
F∗ ∶S (Rn

ξ )→S (Rn
x)

F∗(f)(ξ) =
1

(2π)n/2 ∫Rn
f(x)eiξxdx.

Moreover, F−1 = F∗ on the Schwartz functions.

2P.V. stands for Cauchy principal value. P.V. ∫Rn udx = limϵ→0 ∫Rn/Bϵ(0) udx.
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A key aspect of the Fourier transform is that when you apply a differential operator
to a function in the spatial domain Rn

x, it corresponds to multiplying the Fourier
transform of that function by a certain polynomial in the frequency domain Rn

ξ . This
operation can be represented mathematically as convolution with an integral kernel
KP ,

P (f)(x) = ∫
Rn
KP (x, y)f(y)dy.

Let’s make this more concrete. For a differential operator P of the form∑α≤k aα(x)D
α,

where Da ∶=
1
i ∂a, we have

P (f)(x) = F∗(σP (x, ξ)Ff)(x) =
1

(2π)n∬
ei(x−y)⋅ξσP (x, ξ)f(y) dy dξ

= ∫
1

(2π)n ∫
ei(x−y)⋅ξσP (x, ξ)dξ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
KP (x,y)

f(y)dy

S (Rn
x) S (Rn

x)

S (Rn
ξ ) S (Rn

x ×Rn
ξ )

P

F
σ(P )

F∗

f P (f)

F(f) σ(P )(x, ξ)F(f)

P

F

σ(P )
F∗

In particular, for a Laplace type operator, we have

F((−∆)f)(ξ) = ∣ξ∣2F(f)(ξ).

This leads to the second definition of the fractional Laplacian.

Definition 2.2 (by Fourier transform). We define (−∆)γ to be the differential oper-
ator whose principal symbol is ∣ξ∣2γ, i.e.

F((−∆)γf)(ξ) = ∣ξ∣2γF(f)(ξ).

3 Caffarelli-Silvestre extension problem

As it mentioned in the introduction, we may formulate an extension problem and
recover the fractional Laplacian from it. Consider Rn+1

+ with local coordinates (x, y) ∈
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Rn+1
+ = Rn × R+. Let γ ∈ (0,1). The Caffarelli-Silvestre gives a interpretation of

the fractional Laplacian using Dirichlet-to-Neumann map associated to the weighted
Laplacian [CY23].

Definition 3.1 (by Caffarelli-Silvestre extension theorem). If U is a solution to the
weighted Laplacian ∆m ∶=∆x +m

1
y∂y + ∂

2
y , m = 1 − 2γ. That is,

⎧⎪⎪
⎨
⎪⎪⎩

∆mU(x, y) = 0 in Rn+1
+

U(x,0) = f(x) on Rn.
(1)

Then the Dirichlet-to-Neumann operator f → ∂yU recovers (−∆x)
γ. We have

(−∆x)
γf = −22γ−1

Γ(γ)

Γ(1 − γ)
lim
y→0

y1−2γ ∂yU. (2)

Remark 3.2. The Poisson kernel for (−∆)γ is Kγ(x, y) = cn,γ
y2γ

(∣x∣2+∣y∣2)
n
2 +γ

and U =

Kγ ∗x f . One may compare this with Definition 2.

A particular case is when γ = 1
2 , ∆

1/2 is the Dirichlet-to-Neumann map

f ↦ −Uy(x,0).

Moreover, the Dirichlet principle provide a sharp trace inequality.

Theorem 3.3 (Dirichlet’s principle). Suppose U ∈ C1(Ω) ∪C0(Ω) is the solution to
Poisson’s equation

⎧⎪⎪
⎨
⎪⎪⎩

∆U + g = 0 in Ω

U = f on ∂Ω

then u can be obtained as the minimizer of the Dirichlet energy

E[V ] = ∫
Ω

1

2
∣∇V ∣2 − V g dx

where V ∈ C1(Ω) ∪C0(Ω) such that v = f on ∂Ω.
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Theorem 3.4 (Sharp trace inequality). For γ ∈ (0,1),

21−2γ
Γ(1 − γ)

Γ(γ) ∫Rn
(−∆x)

γf dx ≤ ∫
Rn+1
+

∣∇U ∣2y1−2γ dxdy,

with equality holds precisely when U solves the extension problem (1).

4 Higher order fractional Laplacian

In this section, we’ll explore how we can expand the applicability of the fractional
Laplacian by defining it for any γ ∈ (0,∞)/N, as well as for particular types of man-
ifolds with boundaries. In the realm of real analysis, this extension incorporates
Poincaré-Einstein manifolds, whereas in the complex domain, it encompasses asymp-
totically complex hyperbolic Einstein manifolds.

4.1 Scattering formulation

Chang and González [CdMG10] extended the fractional Laplacians to higher order
through Graham-Zworski scattering theory. This process gives a clean formula of
(−∆)γ via taking inductive derivatives. However, it does not provide a trace inequal-
ity.

Given γ ∈ (0, n2 )/N, for a function f ∈ C∞(Rn) we consider the boundary value
problem

⎧⎪⎪
⎨
⎪⎪⎩

∆xU + (1 − 2γ)
1
y∂yU + ∂

2
yU = 0 in Rn+1

+

U(x,0) = f(x) on Rn.

Remark 4.1. Note that the weighted Laplacian can be formulate using 0-calculus.
When the boundary fibration is given by {pt} Ð ∂X ↪ M , the Laplacian is of the
form −∆x − v

1
y∂y − +∂

2
y .

Denote U to be a solution to the boundary value problem, then u = yn−sU is a solution
to the following Poisson problem

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−∆gHn+1u − s(n − s)u = 0 in Rn+1
+

u = yn−sF + ysG

F (x,0) = f(x) on Rn.
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Chang and González used the Poisson problem to recover fractional Laplacian

(−∆)γf =
dγ
2[γ]

A−1γ lim
y→0

y1−2[γ]∂y(
1

y
∂y)

⌊γ⌋
U,

where

dγ = 2
γ Γ(γ)

Γ(−γ)
, Aγ = 2

⌊γ⌋(γ − 1)⋯(γ − ⌊γ⌋ + 1).

In particular, when γ ∈ (0,1) we recover (2).

Remark 4.2. The construction described above applies to Poincaré-Einstein man-
ifolds. It requires understanding the asymptotic behavior of the interior metric

g = dρ2+h
ρ2 near the boundary in order to accurately formulate the extension prob-

lem.

4.2 Boundary operators formulation

In Case’s work [Cas21], it has been demonstrated that the corresponding Caffarelli-
Silvestre extension problem, along with the trace inequality, holds when suitable
higher-order boundary operators are introduced. To better understand the extension
problem in this setting, let’s first recall the scattering theory. We will be working on
a Poincare-Einstein manifold X with boundary M = {ρ = 0}.

Let ∆+ be the Laplace-Beltrami operator for the interior metric g+, and suppose
n2

4 − γ
2 is not in the L2-spectrum of −∆+. Given f ∈ C∞(M) and set s = n

2 + γ. Then
there is a unique solution u = P(s)f of the Poisson equation

∆+u + s(n − s)u = 0,

such that near M there is some F,G ∈ C∞(X̄),

⎧⎪⎪
⎨
⎪⎪⎩

P(s)f = ρn−sF + ρsG,

F ∣M = f.

We call the map P ∶ C∞(Rn) → C∞(Rn+1
+ ); f ↦ u the Poisson map, and define the

scattering operator to be S(s)(f) = G∣ρ=0.
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Remark 4.3. The GJMS operator of order 2γ is the normalized scattering operator
[GJMS92, FdMGMT15]:

P θ
γ = 2

γ Γ(γ)

Γ(−γ)
S(

m + γ

2
).

One can check directly that the GJMS operator is conformal covariant in the sense
that for smooth w, [CY23]

P e2wθ
γ f = e−(m+γ)wP θ

γ (e
(m−γ)wf).

Let γ ∈ (0,∞)/N, and decompose γ = ⌊γ⌋ + [γ] into integer and fractional part. Set
m = 1− 2[γ] and k = ⌊γ⌋+ 1. We define the weighted poly Laplacian to be k-th power
of the weighted Laplacian ∆m, i.e.

L2k =∆
k
m = (∆ +m

1

y
∂y)

k

and boundary operators B2γ
2j on the function space C2γ(Rn+1

+ ). Then the generalized
extension problem becomes

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

L2k(V ) = 0 in Rn+1
+

B2γ
2j (V ) = f

(2j) j ∈ [0, ⌊γ2 ⌋]

B2γ
2γ−2j(V ) = ϕ

(2j) j ∈ [0, ⌊γ⌋ − ⌊γ2 ⌋ − 1] .

Boundary operators B2γ
2j ,B

2γ
2[γ]+2j ∶ C

2γ(Rn+1
+ ) → C∞(Rn) are recursively defined for

0 ≤ j ≤ k − 1 as follows

B2γ
2j = (−1)

jι∗ ○ (∂2
y +m

1

y
∂y)

j

−

j

∑
ℓ=1
(
j

ℓ
)

Γ(1 + j − [γ])Γ(1 + 2j − 2ℓ − γ)

Γ(1 + j − ℓ − [γ])Γ(1 + 2j − ℓ − γ)
∆ℓ

xB
2γ
2j−2ℓ,

B2γ
2[γ]+2j = (−1)

j+1ι∗ ○ ym∂y(∂
2
y +m

1

y
∂y)

j

−

j

∑
ℓ=1
(
j

ℓ
)
Γ(1 + j + [γ])Γ(1 + 2j − 2ℓ − ⌊γ⌋ + [γ])

Γ(1 + j − ℓ + [γ])Γ(1 + 2j − ℓ − ⌊γ⌋ + [γ]
∆ℓ

xB
2γ
2[γ]+2j−2ℓ.

Here ι∗ ∶ C∞(Rn+1
+ )→ C∞(Rn) is the restriction map.
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Remark 4.4. Another way to define the boundary operator, is given in [FLY23b]

B2γ
2j = b2jρ

−n
2
+γ−2j ○

j=1

∏
ℓ=0
(∆+ +

n2

4
− (γ − 2ℓ)2)

○

j=1

∏
ℓ=0
(∆+ +

n2

4
− (γ − 2ℓ − 2⌊γ⌋)2) ○ ρ

n
2
−γ ∣

ρ=0
;

B2γ
2j+2[γ] = b2j+2[γ]ρ

−n
2
+γ−2j−2[γ] ○

j=1

∏
ℓ=0
(∆+ +

n2

4
− (γ − 2ℓ)2)

○

j=1

∏
ℓ=0
(∆+ +

n2

4
− (γ − 2ℓ − 2⌊γ⌋)2) ○ ρ

n
2
−γ ∣

ρ=0
.

We define the associated Dirichlet form to be

Q2γ(U,V ) = ∫
Rn+1
+

UL2kV ym dxdy

+

⌊ γ
2
⌋

∑
j=0
∫
Rn

B2γ
2j (U)B

2γ
2γ−2j(V )dx −

⌊γ⌋−⌊ γ
2
⌋−1

∑
j=0

∫
Rn

B2γ
2γ−2j(U)B

2γ
2j (V )dx.

This is a symmetric two form, whose trace is the corresponding Dirichlet energy E(U).

Theorem 4.5 (Sharp Sobolev trace inequality). For all function U ∈ C2γ(Rn+1
+ ) ∩

W ⌊γ⌋+1,2(Rn+1
+ , y1−2[γ]), f (2j) = B2γ

2j (U) and ϕ(2j) = B2γ
2[γ + 2j](U), where 0 ≤ j ≤ ⌊γ⌋ −

⌊
γ
2 ⌋ − 1,

E2γ(U) ≥
⌊ γ
2
⌋

∑
j=0
∫
Rn

cγ,jf
(2j)(−∆)γf (2j) dx +

⌊γ⌋−⌊ γ
2
⌋−1

∑
j=0

∫
Rn

dγ,jϕ
(2j)(−∆)⌊γ⌋−[γ]−2jϕ(2j) dx.

Moreover, equality holds if and only if L2k(U) = 0.

The aforementioned construction is applicable to complex manifolds, as elaborated in
[FLY23a, Wan17]. The key idea revolves around formulating the extension problem
with suitable boundary operators B, which essentially encode the information from F
and G in the scattering problem. These approaches also yields energy inequalities.
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