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I. Calculus I Review

• Examples can be found in the assignment HW0.
• Make sure you understand how to take derivatives and compute limits and the basic

integrals, as these concepts are essential for Calculus II.

1. Limits, Derivatives, and Integrals

1. Limits Laws.

(i) lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x)

(ii) lim
x→c

(f(x) · g(x)) = lim
x→c

f(x) · lim
x→c

g(x)

(iii) lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)
if lim

x→c
g(x) ̸= 0

2. L’Hôpital’s Rule. When lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, we may apply L’Hôpital’s Rule

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Example 1.1 (“Counterexample” to L’Hôpital’s Rule).

lim
x→0

x+ sinx

x
= DNE.

L’Hôpital’s Rule does not apply because lim
x→0

x+ sinx = 1 ̸= 0. •

3. Derivatives.

Definition 1.2.
f ′(x) = lim

h→0

f(x+ h)− f(x)

h
.

Derivative Rules

• Product Rule:
d

dx
[f(x)g(x))] = f ′(x) · g(x) + f(x) · g′(x),

• Chain Rule:
d

dx
[f(g(x))] = f ′(g(x)) · g′(x).

Derivatives of elementary functions
d

dx
ex = ex,

d

dx
sinx = cosx,

d

dx
cosx = − sinx,

d

dx
lnx =

1

x
,

d

dx
tanx = sec2 x.
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2. Integration

1. Definition. Reversing the process of differentiation:

Definition 2.1. ∫ b

a
f(x) dx = lim

∆x→0

n∑
i=1

f(a+∆x · i) ·∆x.

2. Integration Laws.

•

∫
(f(x)± g(x)) dx =

∫
f(x) dx±

∫
g(x) dx,

•

∫
c · f(x) dx = c ·

∫
f(x) dx.

3. Fundamental Theorem of Calculus.

Theorem 2.2 (Fundamental Theorem of Calculus (FTC)). (i) If f is continuous on [a, b], then
the function F defined by

F (x) =

∫ x

a
f(t) dt

is continuous on [a, b] and differentiable on (a, b), and F ′(x) = f(x) for all x ∈ (a, b).
(ii) If f is continuous on [a, b] and F is an antiderivative of f on [a, b], then∫ b

a
f(x) dx = F (b)− F (a).

4. Substitution Rule. Let u = g(x), then:∫
f(g(x))g′(x) dx =

∫
f(u) du.

6



II. Chapter 7

1. Integration by Parts
[1] §7.1

[2] Week
1

• New method for integrals: Integration by parts provides a technique to evaluate
integrals of products of functions.

• Inverse of the product rule: If
d

dx
(uv) = u

dv

dx
+ v

du

dx
, then∫

u dv = uv −
∫

v du (IBP)

1. Motivation. Using the Fundamental Theorem of Calculus, we know the antiderivative of basic
functions such as x and ex: ∫

x dx =
x2

2
+ C,∫

ex dx = ex + C.

However, for functions like lnx or tanx, a new tool is required: Integration by Parts.

2. Formula Derivation. Key idea: product rule for differentiation

Proof. Let u, v be functions of x. Recall that the product rule for differentiation formula says

(uv)′ = u′v + uv′.

Integrating both sides with respect to x gives∫
uv′ dx = uv −

∫
u′v dx.

Rearranging gives the formula for integration by parts:∫
u dv = uv −

∫
v du.

□

3. Example. [3] There
were typo
in the
statement
of this
question
before.

Example 1.1 (Evaluate
∫

lnx dx). Take u = lnx and dv = dx. Then:∫
lnx dx = x lnx−

∫
x · 1

x
dx

= x lnx−
∫

1 dx

= x lnx− x+ C.

•

Example 1.2 (Evaluate
∫

x lnx dx). Take u = lnx and dv = x dx. Then du =
1

x
dx and [4] Here’s

how to
solve∫

x lnx dx

7



v =
1

2
x2: ∫

lnx dx =
1

2
x2 lnx−

∫
1

2
x2 · 1

x
dx

=
1

2
x2 lnx−

∫
1

2
x dx

=
1

2
x2 lnx− 1

4
x2 + C.

•

4. Steps to Apply IBP.

(i) Identify u and dv(the LIATE rule can be used, see below).
(ii) Compute du and v.
(iii) Substitute the above expressions into the IBP formula and evaluate.

Choosing u and v (LIATE Rule): When applying integration by parts, the choice of u and dv
can be guided by the LIATE rule. Take u to be the function that appears earlier in the list.

• Logarithmic functions lnx, loga x
• Inverse trigonometric functions arcsinx, arctanx etc.
• Algebraic functions xa

• Trigonometric functions sinx, cosx etc.
• Exponential functions ex, ax

However, in general, there is no easy way to immediately determine which function to choose as u.
In practice, you won’t need to remember this rule, as the computation becomes second nature.

5. More Examples.

Example 1.3 (Evaluate
∫

arctanx dx). Let u = arctanx and dv = dx. Then:

du =
1

1 + x2
dx, v = x

Substitute into the integration by parts formula:∫
arctanx dx = x arctanx−

∫
x · 1

1 + x2
dx

= x arctanx− 1

2
ln
(
1 + x2

)
+ C.

The last step is done by substituting w = 1 + x2:∫
x · 1

1 + x2
dx =

1

2

∫
dw

w
= lnw + C.

•

As in the example above, there are situations where both integration by parts and
substitution are needed.

Here’s another example.
8



Example 1.4 (Evaluate
∫

x3√
1 + x2

dx). Take u = x2 and dv =
x√

1 + x2
dx, so:

du = 2x dx, v =
√

1 + x2.

Substitute into the integration by parts formula:∫
x3√
1 + x2

dx =

∫
x2 · x√

1 + x2
dx = x2

√
1 + x2 −

∫
2x
√

1 + x2 dx.

To compute
∫

2x
√

1 + x2 dx: Using substitution, let w = 1 + x2, then dw = 2x dx. We have∫
2x
√

1 + x2 dx =

∫ √
w dw =

2

3
w3/2 + C =

2

3
(1 + x2)3/2 + C.

So the original integral is:∫
x3√
1 + x2

dx = x2
√
1 + x2 − 2

3
(1 + x2)3/2 + C.

•

You may notices that there is no need to apply the IBP at all. Here’s another way to solve the same
problem.

Example 1.5 (The same problem with substitution). Using substitution rule, we let u = 1+ x2 so
that du = 2x dx. Then ∫

x3√
1 + x2

dx =

∫
x2 · x√

u
dx =

1

2

∫
u− 1√

u
du

=
1

2

∫
u1/2 du− 1

2

∫
u−1/2 du

=
1

3
u3/2 − u1/2 + C

=
1

3
(1 + x2)3/2 −

√
1 + x2 + C.

•
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2. Trigonometric Integrals

[5] §7.2

• Particular type of integral: ∫
sinn x cosm x dx.

• Tools to use:
• Trig formulae and identities (to reduce the powers of sinx or cosx)
• Substitution rule
• Integration by parts

• To memorize:

sin2 x+ cos2 x = 1,

sin(2x) = 2 sinx cosx, cos(2x) = cos2 x− sin2 x

The other formulae can be derived from the above.

In this section, we are interested in solving integrals of the form:

∫
sinn x cosm x dx

where n,m are integers. (You will see in the homework that n and m could be noninteger).

We first recall the trigonometric formulae and identities.

sin2 x+ cos2 x = 1 tan2 x+ 1 = sec2 x

sin(2x) = 2 sinx cosx cos(2x) = cos2 x− sin2 x

sinx = ±
√

1− cos(2x)

2
cosx = ±

√
1 + cos(2x)

2

It suffices to remember the equations in red; the rest can be derived from them. (Try it).

1. First Example of Trigonometric Integral. Before discussing the general approach, let’s
first look at an example to motivate the method and the overall strategy.
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Example 2.1 (Evaluate
∫

sin3 x cos2 x dx). Apply the substitution rule. Let u = cosx, then

du = − sinx dx. We get∫
sin3 x cos2 x dx =

∫
sin2 x cos2 x · sinx dx (substitution u = cosx)

=

∫
(1− u2)u2(− du)

= −
∫
(u4 − u2) du

= −
(
u5

5
− u3

3

)
+ C (Constant C indefinite integral)

= −
(
cos5 x

5
− cos3 x

3

)
+ C.

•

2. Steps to Evaluate Trig Integrals.

(i) Identify the type of the integrand
• If n or m is odd, substitution rule is needed. E.g. n is odd, rewrite∫

sinn x cosm x dx =

∫
sinn−1 x cosm x sinx dx.

Then take u = cosx so that du = −sinx dx.
• If both of the powers are even, use trig formulae to reduce the powers of sinx and cosx’s.

(ii) Be careful with the sign!

3. More Examples. In the next example, you will see that the half-angle formulae are particu-
larly useful when dealing with even powers of sine and cosine.

Example 2.2 (Evaluate
∫

cos4 dx). Use cos2 x =
1 + cos(2x)

2
to lower the order of cosx’s, we

get: ∫
cos4 x dx =

∫ (1 + cos(2x)

2

)2
dx

=

∫
1 + 2 cos(2x) + (cos2(2x))2

4
dx (pull the constant 1/4 out)

=
1

4

∫
1 + 2 cos(2x) +

1 + cos(4x)

2
dx

=
3

8
x+

sin(2x)

4
+

1

32
sin(4x) + C.

•
[6] Week
2Similarly we can compute ∫

tann x secm x dx.

Recall that (tanx)′ = sec2 x and (secx)′ = secx tanx.
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Example 2.3 (Evaluate
∫

tanx sec4 x dx).∫
tanx sec4 x dx =

∫
tanx sec2 x sec2 x dx =

∫
tanx(1 + tan2 x) · sec2 x dx

(substitution u = tanx)

=

∫
u(1 + u2) du

=
u2

2
+

u4

4
+ C (Constant C due to indefinite integral)

=
tan2 x

2
+

tan4 x

4
+ C.

•

Example 2.4 (Another way to compute
∫

tanx sec4 x dx). Take u = secx then du = 2 sec2 x tanx dx.

We have ∫
tanx sec4 x dx =

∫
tanx sec2 x sec2 x dx =

∫
1

2
du =

u2

4
+ C ′ =

sec4 x

4
+ C ′.

•

Note that the two method gives the SAME answer. Here’s why

sec4 x

4
+ C ′ =

(1 + tanx)2

4
+ C ′ =

tan2 x

2
+

tan4 x

4
+

1

4
+ C ′.

The constant C and C ′ satisfies the relation: C =
1

4
+ C ′.

4. Beyond Calculus II. Why do we study
∫

sinn x cosm x dx?

Integrals of the this form are studied for their broad applications in mathematics, physics, and
engineering. These integrals appear in Fourier analysis, wave mechanics, and signal processing,
where sine and cosine functions serve as fundamental building blocks.

3. Trigonometric substitution
[7] §7.3

• Particular type of integral: integral involving square root of quadric polynomials.
• Tools to use: Trig substitutions (the idea comes from the trig identities)

x Range of θ dx
√
· · · becomes

√
a2 − x2 a sin(θ) −π

2
≤ θ ≤ π

2
a cos(θ) dθ a cos(θ)

√
x2 + a2 a tan(θ) −π

2
< θ <

π

2
a sec2(θ) dθ a sec(θ)

√
x2 − a2 a sec(θ) 0 ≤ θ ≤ π

2
or

π

2
< θ ≤ π a sec(θ) tan(θ) dθ a tan(θ)

12



1. Trig Substitution Rule. In this section, we consider integrals containing square roots of the
form √

a2 − x2
√

x2 + a2
√

x2 − a2.

We use trigonometric substitutions:

x Range of θ dx
√
· · · becomes

√
a2 − x2 a sin(θ) −π

2
≤ θ ≤ π

2
a cos(θ) dθ a cos(θ)

√
x2 + a2 a tan(θ) −π

2
< θ <

π

2
a sec2(θ) dθ a sec(θ)

√
x2 − a2 a sec(θ) 0 ≤ θ ≤ π

2
or

π

2
< θ ≤ π a sec(θ) tan(θ) dθ a tan(θ)

Note that we use trigonometric identities to simplify the square root expressions.

For example:

x = a sin θ =⇒
√
a2 − x2 =

√
a2 − a2 sin2 θ

=
√
a2 cos2 θ = |a cos θ|.

Warning: We have to specify the range of θ so that we can get rid of | |.

2. Steps to Apply Trig Substitutions.

(i) Identify the integrand type: there are three types√
a2 − x2

√
x2 + a2

√
x2 − a2.

(ii) Choose an appropriate substitution: Use the table or trigonometric identities to eliminate
the square root by substituting x with a trigonometric function.

(iii) Always specify the range of θ to ensure x is the positive root +
√
· · ·.

(iv) Back-substitution: Express the trig functions sin θ, tan θ · · · in terms of x (trig identities and
Calculus I knowledge are needed, and rewrite θ using inverse trig functions.

3. Examples.

Example 3.1 (Evaluate
∫ √

9− x2 dx). Take x = 3 sin θ, with −π

2
≤ θ ≤ π

2
, then∫ √

9− x2 dx =

∫ √
9− (3 sin θ)2 · 3 cos θ dθ =

∫
|3 cos θ| · 3 cos θ dθ

(Need −π

2
≤ θ ≤ π

2
so that cos θ ≥ 0)

=

∫
9 cos2 θ dθ =

∫
9
1 + cos θ

2
dθ =

9

2
θ +

9

4
sin(2θ) + C

=
9

2
θ +

9

2
sin θ cos θ + C =

9

2
arcsin

x

3
+

9

2

x

3

√
1− x2

32
+ C (Back-substitution)

=
9

2
arcsin

x

3
+

x
√
9− x2

2
+ C.

13



For the back-substitution step: note that sin θ =
x

3
, cos θ =

√
1− sin2 θ (by trig identity) =√

1− x3

9
=

√
9− x2

3
, and θ = arcsin

x

3
. •

Example 3.2 (Evaluate
∫

1

x2
√
x2 + 4

dx). Take x = 2 tan θ, with −π

2
< θ <

π

2
, then∫

1

x2
√
x2 + 4

dx =

∫
1

(2 tan θ)2
√
4 tan2 θ + 4

(2 sec2 θ) dθ

=

∫
2 sec2 θ

4 tan2 θ · |2 sec θ|
dθ =

∫
sec θ

4 tan2 θ
dθ

(Need −π

2
< θ <

π

2
so that sec θ > 0)

=

∫
cos θ

4 sin2 θ
dθ (Using substitution: u = sin θ, du = cos θ dθ)

=

∫
1

4u2
du = − 1

4u
+ C (Back-substitution)

= − 1

4 sin θ
+ C = −

√
4 + x2

x
+ C.

For the back-substitution step: Note that tan θ =
x

2
, so θ = arctan

x

2
. To rewrite sin θ, observe

that tan θ =
Y

X
and sin θ =

Y

R
. Solving for R, we get R =

√
X2 + Y 2 =

√
4 + x2, which implies

sin θ =
x√

4 + x2
. •

Example 3.3 (Evaluate
∫

x√
3− 2x− x2

dx). Complete the square: 3 − 2x − x2 = −(x2 + 2x +

1− 1) + 3 = −(x+ 1)2 + 4. Take u = x+ 1∫
x√

3− 2x− x2
dx =

∫
u− 1√
4− u2

du =

∫
2 sin θ − 1√
4− 4 sin2 θ

2 cos θ dθ

=

∫
2 sin θ − 1

|2 cos θ|
2 cos θ dθ

(Need −π

2
< θ <

π

2
. Note that cos θ is strictly positive.)

=

∫
2 sin θ − 1 dθ = −2 cos θ − θ + C.

= −
√

4− u2 − arcsin
u

2
+ C (Back-substitution)

= −
√

3− 2x− x2 − arcsin
x+ 1

2
+ C.

•

4. Motivation. Why do we study these types of integrals?

Because they frequently arise in problems related to arc length and surface area calculations. These
integrals help us model and solve real-world geometric problems, such as determining the length of
a curve or the area of a surface of revolution. Their importance will become evident as we explore
further in Chapter 8.

14



4. Integration of Rational Functions
[8] §7.4

• Particular type of integral: integral involving rational functions.
• Tools to use: partial fraction decomposition

• A proper rational function R(x) =
P (x)

Q(x)
satisfies degP (x) < degQ(x).

• An improper rational function satisfies degP (x) ≥ degQ(x).
• Improper rational functions are converted into proper ones via polynomial long divi-

sion:
P (x)

Q(x)
= F (x) +

P̃ (x)

Q(x)
.

Factor in denominator Terms in the decomposition of a proper rational function

ax+ b
A

ax+ b

(ax+ b)k
A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ Ak

(ax+ b)k

ax2 + bx+ c
Ax+B

ax2 + bx+ c

(ax2 + bx+ c)k
A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ · · ·+ Akx+Bk

(ax2 + bx+ c)k

1. Rational Functions.

Definition 4.1. A rational function is a function of the form R(x) =
P (x)

Q(x)
, where P (x) and

Q(x) are polynomials.

If degP < degQ, it is proper ; otherwise, it is improper .

Example 4.2.

R1(x) =
1

x+ 1
, R2(x) =

2x+ 1

(x+ 1)2
, R3(x) =

x3 − 3

(x− 7)(x+ 5)
.

The first two are proper; whereas the last one is improper. •

In this section we solve the integral of the type
∫

R(x) dx. The strategy is to rewrite R(x) as a

sum of simpler rational functions (using long division and partial fraction decomposition). Then
use the substitution rule to solve the integral.

15



2. Partial Fraction Decomposition. We start with proper rational functions. The following
table lists the terms that appear in the decomposition of a proper rational function.[9] Note

that
"proper"
is nec-
essary,
otherwise,
there will
be a poly-
nomial
term ap-
pear in
the de-
composi-
tion. See
Example
4.4.

Factor in denominator Terms in the decomposition of a proper rational function

ax+ b
A

ax+ b

(ax+ b)k
A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ Ak

(ax+ b)k

ax2 + bx+ c
Ax+B

ax2 + bx+ c

(ax2 + bx+ c)k
A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ · · ·+ Akx+Bk

(ax2 + bx+ c)k

Improper rational functions are converted into proper ones via polynomial long division:

R(x) =
P (x)

Q(x)
= F (x) +

P̃ (x)

Q(x)
,

where F (x) is a polynomial. Then we can apply partial fraction decomposition to P̃ (x)
Q(x) .

Example 4.3. R2 is proper, so we set

R2(x) =
2x+ 1

(x+ 1)2
=

A

x+ 1
+

B

(x+ 1)2
.

Compare: R3 is improper

R3(x) =
x3 − 3

(x− 7)(x+ 5)
=

x(x− 7)(x+ 5) + 2x2 + 35x− 3

(x− 7)(x+ 5)
= x+

2x2 + 35x− 3

(x− 7)(x+ 5)
.

Then decompose to the second term
2x2 + 35x− 3

(x− 7)(x+ 5)
using the table, we set

2x2 + 35x− 3

(x− 7)(x+ 5)
=

A

x− 7
+

B

x+ 5
.

•

3. Examples of integrals of rational functions.

Example 4.4 (Evaluate
∫

x

x+ 4
dx). The integrand is improper, so we first apply long division:

x

x+ 4
=

x+ 4− 4

x+ 4
= 1− 4

x+ 4
.

So ∫
x

x+ 4
dx =

∫
1− 4

x+ 4
dx = (x+ 4)− 4 ln |x+ 4|+ C.

•
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If Q is a product of distinct linear factors,

Q = (a1x+ b1)(a2x+ b2) · · · (anx+ bn),

we take
R =

A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ An

anx+ bn
.

Example 4.5 (Evaluate
∫

1

x2 − 4
dx). The integrand is proper and the denominator factors as

x2 − 4 = (x− 2)(x+ 2). Using partial fraction decomposition:

1

x2 − 4
=

A

x− 2
+

B

x+ 2
, where A,B are constants.

The numerator gives

(A+B)x+ 2(A−B) = 1 =⇒ A = −B =
1

4
.

Plug this back into the integral, we have

∫
1

x2 − 4
dx =

∫ (
1

4(x− 2)
− 1

4(x+ 2)

)
dx

=
1

4
ln |x− 2| − 1

4
ln |x+ 2|+ C

=
1

4
ln

∣∣∣∣x− 2

x+ 2

∣∣∣∣+ C.

•

If Q contains distinct irreducible quadratic factors, take the corresponding quadratic form

R = (fraction with linear terms) + · · ·+ Ax+B

ax2 + bx+ c
.

Example 4.6 (Evaluate
∫

5x2 + 2

x(x2 + 2x+ 2)
dx). The integrand is proper. To decomposition the

fraction, we set

5x2 + 2

x(x2 + 2x+ 2)
=

A

x
+

Bx+ C

x2 + 2x+ 2
, where A,B,C are constants.

The numerator gives

Ax2 + 2ax+ 2a+Bx2 + Cx = 5x2 + 1 =⇒


A+B = 5

2A+ C = 0

2A = 2

=⇒


A = 1

B = 4

C = −2

.
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Plug this back into the integral, we have∫
5x2 + 2

x(x2 + 2x+ 2)
dx =

∫
1

x
dx+

∫
4x− 2

x2 + 2x+ 2
dx

= ln |x|+
∫

4x− 2

x2 + 2x+ 2
dx = ln |x|+

∫
4x− 2

(x+ 1)2 + 1
dx

(Substitution: u = x+ 1)

= ln |x|+
∫

4u− 6

u2 + 1
du = ln |x|+

∫
4u

u2 + 1
du−

∫
6

u2 + 1
du+ C

= ln |x|+ 2

∫
1

w + 1
dw − 6 arctanu+ C

= ln |x|+ 2 ln |w| − 6 arctanu+ C

= ln |x|+ 2 ln |u2 + 1| − 6 arctan(x+ 1) + C

= ln |x|+ 2 ln |x2 + 2x+ 2| − 6 arctan(x+ 1) + C.

•
[10]
Typo22

If Q contains a repeated linear factor, say (ax+ b)r, include terms of the form:
A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ Ar

(ax+ b)r
.

Similarly, for a repeated quadratic factor, say (ax2 + bx+ c)r, include terms of the form:
A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ · · ·+ Arx+Br

(ax2 + bx+ c)r
.

Example 4.7 (Evaluate
∫

4x

x3 − x2 − x+ 1
dx). The integrand is proper and the denominator

factors as :

x3 − x2 − x+ 1 = (x− 1)2(x+ 1).

Using partial fraction decomposition, we set

4x

x3 − x2 − x+ 1
=

4x

(x− 1)2(x+ 1)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1
, where A,B,C are constants.

The numerator gives

A(x+ 1)(x− 1) +B(x− 1) + C(x− 1)2 = (A+ C)x2 + (B − 2C)x+ (−A+B + C) = 4x,

so
A = 1, B = 2, C = −1.

Thus, the integral becomes:∫
4x

x3 − x2 − x+ 1
dx =

∫
1

x− 1
+

2

(x− 1)2
− 1

x+ 1
dx

= ln
∣∣∣x− 1

x+ 1

∣∣∣− 2

x− 1
+ C.

•
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4. Steps to Evaluate Integrals of Rational Function.

(i) Apply long division to improper rational functions.
(ii) Factorize the denominator of the proper rational functions.
(iii) Set up the terms that appear (see the table above) in the partial fraction decomposition

and solve for the constants.
(iv) Apply the integration techniques learned in the preceding sections.

5. Approximate Integration
[11] §7.7

• Approximating integral
• Tools to use: Midpoint Rule, Trapezoidal Rule, and Simpson’s Rule.
• No need to memorize the statements. Know how to use them.

1. Motivation. In general, it is difficult to compute the antiderivative of a function and apply
the Fundamental Theorem of Calculus, even with techniques we have learned so far. Therefore, we
seek an approximate value of the integral.

Recall from Calculus I, the integral is defined as the limit of Riemann sums:

Definition 5.1.

∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(ξi)∆x.

Since we are interested in an approximate value of the integral, instead of taking n → ∞, we sum
over a finite number of intervals:

∫ b

a
f(x) dx ≈

n∑
i=1

f(ξi)∆x.

For the finite sum above:

• If ξi = a+∆x · (i− 1), it is a left endpoint approximation.
• If ξi = a+∆x · i, it is a right endpoint approximation.

• If ξi == a+∆x · 2i− 1

2
is the midpoint, it is a midpoint approximation.
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x

y

a = x0 b = xnξi

f(ξi)

xi−1 xi xi+1

Figure 1. Riemann sum

2. The Midpoint, Trapezoidal and Simpson’s Rules. We usually use the midpoint approx-
imation. The formula is explicitly written as:

Theorem 5.2 (Midpoint rule).∫ b

a
f(x) dx ≈ Mn = (f(x1) + f(x2) + · · ·+ f(xn))∆x

=

n∑
i=1

f
(
a+∆x · 2i− 1

2

)
·∆x,

where xi are the midpoints and ∆x is the width of each subinterval.

Another way to approximate the integral is the trapezoidal rule:

Theorem 5.3 (Trapezoidal rule).∫ b

a
f(x) dx ≈ Tn =

∆x

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]

=
∆x

2
(f(a) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(b)) .

Note that

Tn =

(
f(x0) + f(x1)

2
+

f(x1) + f(x2)

2
+ · · ·+ f(xn−1) + f(xn)

2

)
∆x.

Each term
f(xi−1) + f(xi)

2
∆x is the area of one trapezoid.

Similar to trapezoidal rule, another rule to approxiamte the integral is
20



Theorem 5.4 (Simpson’s Rule).∫ b

a
f(x) dx ≈ Sn =

∆x

3
[f(a) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(b)] .

3. Error of Approximation.

EM =

∫ b

a
f(x) dx−Mn, ET =

∫ b

a
f(x) dx− Tn ES =

∫ b

a
f(x) dx− Sn.

Error bounds: For a ≤ x ≤ b, suppose |f ′′(x)| ≤ K for the trapezoidal rule and suppose |f (4)(x)| ≤
K for Simpson’s rule, then:

|EM | ≤ K(b− a)3

24n2
, |ET | ≤

K(b− a)3

12n2
|ES | ≤

K(b− a)5

180n4
.

4. Example.

Example 5.5. Let f(x) = x2 on the interval [1, 4]. Determine the number of subintervals n required
such that the error EM in the Midpoint Rule approximation satisfies

|EM | < 0.1.

Solution. The error bound for the Midpoint Rule is given by:

|EM | ≤ K(b− a)3

24n2

where a = 1, b = 4 and K = maxc∈[1,4] |f ′′(c)| = 2.

Substitute into the error formula we have:

|EM | ≤ 2 · (4− 1)3

24n2
=

9

4n2
< 0.1 =⇒ n ≥

√
9

0.4
≈ 4.74.

Since n must be an integer to ensure |EM | < 0.1, the smallest number n is 5. •
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6. Improper Integrals
[12] §7.8

[13]
Week 4 • Improper integrals: deal with unbounded intervals or functions.

• Tools to use: taking limit of a proper integral. E.g.

• Type I:
∫ ∞

a
f(x) dx = lim

t→∞

∫ t

a
f(x) dx

• Type II:
∫ c

a
f(x) dx = lim

t→c

∫ t

a
f(x) dx

• Comparison test: 1 f, g continuous, 2 0 ≤ f(x) ≤ g(x) 3 for x ≥ a. Then∫ ∞

a
f(x) dx converges =⇒

∫ ∞

a
g(x) dx converges∫ ∞

a
f(x) dx diverges ⇐=

∫ ∞

a
g(x) dx diverges

• To memorize: ∫ ∞

a

1

xp
dx

{
converges p > 1

diverges p ≤ 1

In Chapter 5 (Calculus I), we studied definite integrals of the form
∫ b

a
f(x) dx, where:

• f(x) is piecewise continuous, and
• a, b are real numbers.

Such integrals are known as proper integrals (note that this has nothing to do with proper

fractional functions R(x) =
P (x)

Q(x)
).

1. Definition of Improper Integrals. In this section, we extend our discussion to improper
integrals, which arises in two main cases: when the limits of integration are infinite or when the
function being integrated has discontinuities. We define two types of improper integrals.

Definition 6.1 (Type I improper integral).

∫ ∞

a
f(x) dx := lim

t→∞

∫ t

a
f(x) dx,∫ b

−∞
f(x) dx := lim

t→−∞

∫ b

t
f(x) dx,∫ ∞

−∞
f(x) dx :=

∫ a

−∞
f(x) dx+

∫ ∞

a
f(x) dx = lim

t→−∞

∫ a

t
f(x) dx+ lim

t→∞

∫ t

a
f(x) dx.

Definition 6.2. An improper integral is convergent if the above limit exists; otherwise, it is
divergent .
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Definition 6.3 (Type II improper integral). If f(x) has a discontinuity at some point c ∈ [a, b], we
define ∫ c

a
f(x) dx := lim

t→c

∫ t

a
f(x) dx,∫ b

c
f(x) dx := lim

t→c

∫ b

t
f(x) dx,∫ b

a
f(x) dx :=

∫ c

a
f(x) dx+

∫ b

c
f(x) dx = lim

t→c

∫ t

a
f(x) dx+ lim

t→c

∫ b

t
f(x) dx.

x

y

a bc0

Figure 2. Type II indefinite integral

It is important to review the techniques for taking limits from Calculus I. For reference, see
Chapter 2: Limits and Derivatives of the textbook.

2. Steps to Evaluate Improper Integrals.

(i) Identify all points where the integral is improper, including points at infinity and disconti-
nuities.

(ii) Decompose the integral into subintervals such that each integral is proper.
(iii) Express the improper integral as a limit of proper integrals.
(iv) Evaluate the proper integrals and take the limit.

3. Examples.

Example 6.4 (Evaluate
∫ ∞

0
e−x dx).∫ ∞

0
e−x dx = lim

t→∞

∫ t

0
e−x dx = lim

t→∞

[
−e−x

]t
0
= lim

t→∞

(
−e−t + e0

)
= 1.

•

Example 6.5 (Evaluate
∫ ∞

1

1

xp
dx, p < 1).∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx = lim

t→∞

[
x−p+1

−p+ 1

]t
1

= lim
t→∞

1

p− 1

(
1

tp−1
− 1

)
=

1

p− 1
.
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Note that this integral diverges if p > 1. •

Example 6.6 (Evaluate
∫ 1

0

1

x− 1
dx).∫ 1

0

1

x− 1
dx = lim

t→1−

∫ t

0

1

x− 1
dx = lim

t→1−

[
ln |x− 1|

]t
0
= lim

t→1−
ln |t− 1| = −∞.

•

4. Comparison Test for Improper Integrals.[14]
Week 5 Comparison tests can establish the convergence or divergence of improper integrals. Suppose 1 f(x)

and g(x) are continuous functions and 2 0 ≤ f(x) ≤ g(x) 3 for x ≥ a. Then∫ ∞

a
g(x) dx converges =⇒

∫ ∞

a
f(x) dx converges∫ ∞

a
g(x) dx diverges ⇐=

∫ ∞

a
f(x) dx diverges

Example 6.7 (Example to remember).∫ ∞

a

1

xp
dx

{
converges p > 1

diverges p ≤ 1

•

5. Steps for Applying the Comparison Test.

(i) Determine the dominant term of the integrand as x approaches infinity or a discontinuity,
typically a power function.

(ii) Identify the exponent p in the power function and use Example 6.7 to make an initial guess.
(iii) Find suitable 1 continuous functions f(x) and g(x) for the comparison test.
(iv) Justify the inequality 2 0 ≤ f(x) ≤ g(x) for 3 x ≥ a.
(v) Apply the comparison test to confirm the guess.

6. Examples.

Example 6.8 (Show that I =

∫ ∞

1

1 + e−x

x
dx diverges). Step 1. Note that the integrand is

dominated by
1

x
as x → ∞.

Step 2. This corresponds to the case p = 1, and we aim to justify divergence.

Step 3. We set f(x) =
1 + e−x

x
and g(x) =

1

x
. Step 4. Note that 0 ≤ f(x) ≤ g(x) for all x ≥ 1.

Step 5. Moreover, p = 1 so the integral∫ ∞

1
g(x) dx =

∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx

= lim
t→∞

[lnx]t1 = lim
t→∞

(ln t− ln 1) = ∞. (The same computation as Example 6.5)

By the comparison test, I =

∫ ∞

1

1 + e−x

x
dx also diverges.

•
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Example 6.9 (Apply the comparison test to I =

∫ ∞

1

1√
x6 + 1

dx). Step 1. Note that the integrand

is dominated by
1√
x6

=
1

x3
as x → ∞.

Step 2. This corresponds to the case p = 3, and we aim to justify convergence.

Step 3. We set g(x) =
1√

x6 + 1
and compare it to f(x) =

1√
x6

.

Step 4. Note that for x ≥ 1,

0 ≤
√
x6 ≤

√
x6 + 1 =⇒ 0 ≤ 1√

x6 + 1
≤ 1√

x6
.

Step 5. Moreover, p = 3 > 1 so the integral
∫ ∞

1

1√
x6

dx =

∫ ∞

1
x−3 dx converges.

By the comparison test, the integral I also converges. •

Example 6.10 (Apply the comparison test to I =

∫ ∞

2

cos2 x

x2
dx). [15] Read

the re-
maining
exam-
ples we
haven’t
discussed
in class.

Step 1. Note that the integrand is dominated by
1

x2
as x → ∞.

Step 2. This corresponds to the case p = 2, and we aim to justify convergence.

Step 3. We set g(x) =
cos2 x

x2
and compare it to f(x) =

1

x2
.

Step 4. Note that for 0 ≤ cos2 x ≤ 1 for all x, so

0 ≤ cos2 x

x2
≤ 1

x2
.

Step 5. Moreover, p = 2 > 1 so the integral
∫ ∞

2

1√
x2

converges. By the comparison test, the

integral I also converges. •

Example 6.11 (Apply the comparison test to I =

∫ ∞

3

1

x− e−x
dx). Step 1. Note that the

integrand is dominated by
1

x
as x → ∞.

Step 2. This corresponds to the case p = 1, and we aim to justify divergence.

Step 3. We set f(x) =
1

x− e−x
and compare it to g(x) =

1

x
.

Step 4. Note that for 0 < e−x < x with x > 3, so

0 < x− e−x ≤ x < ∞ =⇒ 0 <
1

x
<

1

x− e−x
.

Step 5. Moreover, p = 1 so the integral
∫ ∞

3

1

x
diverges. By the comparison test, the integral I also

diverges. •
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III. Chapter 8

In this chapter, we will explore the applications of the techniques we have learned so far. We
will apply integration methods to problems involving arc length, surface area, and other geometric
quantities.

1. Arc Length
[16] §8.1

• Infinitesimal line element:

ds =
√

( dx)2 + ( dy)2 =

√
1 + (f ′(x))2 dx =

√
1 + (g′(y))2 dy.

• Arc length:

L =

∫ B

A
ds =

∫ b

a

√
1 + (f ′(x))2 dx =

∫ d

c

√
1 + (g′(y))2 dy.

Let’s first consider how to compute arc length

1. Derivation of the Arc Length Formula.

L = lim
n→∞

n∑
i=1

|Pi−1Pi|, where |Pi−1Pi| =
√
(∆xi)2 + (∆yi)2 =

√
1 +

(
∆yi
∆xi

)2

∆xi.

y = f(x)

P0
P1 P2

Pn−1
Pn

x

y

Figure 3. Arc length

Suppose the curve is given by the graph of some differentiable function y = f(x). Then, when

taking the limit ∆x → 0, the expression
∆y

∆x
→ f ′. This suggests

L = lim
n→∞

n∑
i=1

√
1 +

(
∆y

∆x

)2

∆x =

∫ b

a

√
1 + (f ′(x))2 dx.

Definition 1.1. We define the infinitesimal line element

ds =
√

( dx)2 + ( dy)2 =

√
1 + (f ′(x))2 dx =

√
1 + (g′(y))2 dy.

Then the arc length L of a curve is given by

L =

∫ B

A
ds.
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In particular, if the curve is given by y = f(x) for x ∈ [a, b], where f is continuous and differentiable,
then

L =

∫ b

a

√
1 + (f ′(x))2 dx.

Similarly, if the curve is given by x = g(y) for y ∈ [c, d], where g is continuous and differentiable,
then:

L =

∫ d

c

√
1 + (g′(y))2 dy.

2. Examples.

Example 1.2. Let y = ex for x ∈ [0, 2]:

L =

∫ 2

0

√
1 + (ex)2 dx.

Alternatively, using x = ln y, we rewrite the integral:

L =

∫ e2

1

√
1 +

1

y2
dy.

•

Example 1.3. Let y2 + x2 = 1 (Unit Circle).

We first compute the arc length of the upper half circle and then use symmetry to get the arc length
of the full circle. The upper half of the circle (y ≥ 0) is given by

y =
√

1− x2, −1 ≤ x ≤ 1.

Therefore,

L =

∫ 1

−1

√
1 +

(
− x√

1− x2

)2

dx =

∫ 1

−1

1√
1− x2

dx = · · · = π.

The arc length of the full circle is given by 2L = 2π. •

3. Arc Length Function. Given a curve y = f(x), the arc length function s(x) from x = a to
x = b is:

s(x) =

∫ x

a

√
1 + (f ′(t))2 dt.

Example 1.4. Let f(x) = x2 − lnx

8
for x ∈ [1,∞). Then

s(x) =

∫ x

1

√
1 +

(
2t− 1

8t

)2

dx =

∫ x

1

√
1 + 4t2 − 1

2
+

1

64t2
dt

=

∫ x

1
2t+

1

8t
dt = t2 +

ln t

8

∣∣∣x
1
= x2 +

lnx

8
− 1.

•
[17]
Typo22

4. Steps to Compute Arc Length.

(i) Check if the function is differentiable and determine which variable to use.
(ii) Write down the corresponding infinitesimal line element ds.
(iii) Set up the arc length integral. Be careful with the limits of integration.
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2. Area of a Surface of Revolution
[18] 8.2

1. Derivation of the Surface Area of Revolution formula.

• Infinitesimal area element:

dA = 2πR ds.

• Surface area:
A =

∫
dA.

A surface of revolution is formed by rotating a curve about a line (e.g. the x- or y-axis).

To derive the area, recall the surface area of a cylinder is 2πRl.

If we take infinitesimal line segments ds, the small piece is approximately a cylinder.

A = lim
n→∞

n∑
i=1

2πf(x) ds =

∫ b

a
2πf(x) ds.

This expression needs to be rewritten in terms of x to make it computable.

Recall from last section s(x) =

∫ x

a

√
1 + (f ′(t))2 dt. This tells us

ds =

√
1 + (f ′(t))2 dx.

We can rewrite the surface areas as follows.

For a curve y = f(x) rotated about the x-axis, the surface area A =
∫

dA is:

A =

∫ x2

x1

2πf(x)

√
1 + (f ′(x))2 dx

=

∫ y2

y1

2πy

√
1 +

( dx

dy

)2
dy. (

dx

dy
is given by implicit differentiation)

If the curve x = g(y) is rotated about the y-axis, then:

A =

∫ y2

y1

2πg(y)

√
1 + (g′(y))2 dy

=

∫ x2

x1

2πx

√
1 +

( dy

dx

)2
dx. (

dy

dx
is given by implicit differentiation)

2. Examples.
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Example 2.1. Let y =
√
9− x2 for x ∈ [−2, 2]. Rotating about the x-axis, compute the surface

area:

ds =

√
1 + (y′)2 dx =

√
1 +

(
− x√

9− x2

)2

dx =

√
1 +

x2

9− x2
dx

=

√
9− x2 + x2

9− x2
dx =

3√
9− x2

dx.

A =

∫ 2

−2
2πf(x) ds =

∫ 2

−2
2π
√
9− x2 · 3√

9− x2
dx

=

∫ 2

−2
6π dx = 6π(2− (−2)) = 24π.

•

Note that if the axis is shifted by 1, (that is, rotated about the y = −1 axis), then R = f(x) + 1.

Example 2.2. Let y = ex for x ∈ [0, 2]. Rotating about the y-axis, set up the surface area of
revolution. The radius is given by R(y) = ln(y). So

ds =

√
1 +

1

y2
dy,

and the surface area is given by [19]
Typo25

A =

∫
dA =

∫ e2

1
2π ln(y)

√
1 +

1

y2
dy.

•

3. Steps to Compute Surface Area.

(i) Determine whether R is a function of x or y; this will determine the variable used in the
integration.

(ii) Once you select the variable (either x or y), write down the corresponding infinitesimal line
element ds.

(iii) Set up the infinitesimal area element dA and the surface area integral. Be careful with
the limits of integration.

3. Applications to physics and engineering
[20] 8.3

We likely won’t have time to cover this in class, but you’re welcome to read it if you’re
interested in the applications of the integral techniques we’ve learned. I’m happy to discuss
any questions during discussion, office hours, or whenever we meet.

1. Hydrostatic Pressure and Force. The force F exerted by a fluid on a submerged plate is
given by

F = mg = ρgAd

where ρ is the fluid density, g is gravitational acceleration, A is the surface area and d is the
depth/width.
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Example 3.1. Compute the force on one end of a submerged cylinder with radius 3 and depth 10.
Here we have ρ = ρ(y) and d = 7− y is a constant. Since the infinitesimal area ∆A is given by

∆A = 2
√
9− y2i∆y,

taking limits as ∆y → 0, we have d

dA = 2
√

9− y2 dy.

Substitute into the force, we have

F =

∫ 3

−3
ρg(7− y) dA =

∫ 3

−3
(7− y)ρg

√
9− y2 dy.

•

2. Moments and Center of Mass. For a lamina with density ρ, the total mass of the lamina
is:

M =

∫
ρ(x, y) dA.

The moment about the x-axis is:

Mx = ρ

∫ b

a
f(x) · f(x)

2
dx.

The moment about the y-axis is:

My = ρ

∫ b

a
xf(x) dx.

The center of mass (x, y) = (
My

M
,
Mx

M
). (Notice the swap in x and y).

Example 3.2. Find the center of mass of a semicircular plate, suppose ρ is a constant:

y =
1

ρA
· ρ
∫ r

−r

1

2
f(x)2 dx =

1
1

2
πr2

∫ r

−r

1

2
(r2 − x2) dx (Use symmetry)

=
2

πr2

∫ r

0
r2 − x2 dx =

2

πr2

[
r2x− x3

3

]r
0

=
4r

3π
.

•
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IV. Chapter 10

In this chapter, we introduce an alternative method for representing curves on the 2D plane. Within
this framework, we will also explore the reformulated expressions for arc length and the surface area
of a revolution.

1. Curves Defined by Parametric Equations
[21] §10.1

[22]
Week 6

• New Concept: Parametrization

1. Parametrization. Consider a particle moving along a curve as follows: The curve cannot be

x

y

O

M

M(t = 0)

φ

er

eθ

ex

ey

Figure 4. A plot of the Golden Spiral.

expressed as y = f(x) because it fails the vertical line test. However, by introducing a parameter t,
representing the angle, the golden spiral can be represented as a parametric curve:

x(t) = aebt cos(t), t ≥ 0,

y(t) = aebt sin(t).

(It can also be represented in polar coordinates (see §10.3) as r(θ) = aebθ.)

Definition 1.1. The system of equations

x = f(t),

y = g(t).

is called a parametric equation/parametrization , and the resulting curve C is called a para-
metric curve . We call t a parameter .

Example 1.2 (Unit Circle).

x = cos t, 0 ≤ t < 2π

y = sin t.

Note that cos2 t+ sin2 t = 1, which implies x2 + y2 = 1. Thus, these equations parametrize a unit
circle. •
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Note that parameterizations are not unique.

Example 1.3 (Circle with Opposite Orientation).

x = sin 2t, , 0 ≤ t < π

y = cos 2t.

These parametrize the same circle as in Example 1.1, but with opposite orientation. •

Example 1.4 (Circle of Radius r Centered at (a, b)). The equation of the circle is

(x− a)2 + (y − b)2 = r2.

The corresponding parametrization is given by:

x = a+ r cos t, 0 ≤ t < 2π

y = b+ r sin t.

Here r represents the scaling and a, b represents the translation. •

Example 1.5 (Parabola). The curve x = 6− 4y2 can be parametrized directly as:

x = 6− 4t2, t ∈ R
y = t.

•

We can compute the x- and y-intercepts, critical points, and tangent lines (recall this is y − y0 =
y′(x0)(x − x0)) just as we do in rectangular coordinates. There will be examples in the discussion
worksheet.

2. Calculus with Parametric Curves
[23] §10.2

• Calculus of Parametric Curves:

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

L =

∫ t2

t1

ds,

S =

∫ t2

t1

dA =

∫ t2

t1

2πR ds.

Calculus techniques can be applied to analyze parametrized curves. For a curve parametrized as
x = f(t) and y = g(t), we can compute the following.

• Tangent slope: when
dx

dt
̸= 0, the chain rule says

dy

dt
=

dy

dx
· dx

dt
. Hence,

dy

dx
=

dy

dt
dx

dt

.

Remark 2.1. (i)
dx

dt
̸= 0 is required to take the quotient.
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(ii)
dx

dt
= 0,

dy

dt
̸= 0 corresponds to the vertical line y = ct.

(iii)
dx

dt
̸= 0,

dy

dt
= 0 corresponds to the horizontal line x = ct.

We now introduce the substitution x = x(t), dx =
dx

dt
dt:

• Infinitesimal line element

ds =

√
(1 +

(
dy

dx

)2

dx =

√
(1 +

(
dy/ dt

dx/ dt

)2 dx

dt
dt =

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

• Arc length:

L =

∫ b

a

√
(1 +

(
dy

dx

)2

dx =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

• Surface area (for revolution):

S =

∫ b

a
2πR ds, where ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

1. Example.

Example 2.2. Consider the parametrization

x = cos2 t, 0 ≤ t ≤ π

4
.

y = sin2 t.

The infinitesimal line element is given by

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

√
(−2 cos t sin t)2 + (2 sin t cos t)2 dt

=
√

4 cos2 t sin2 t+ 4 sin2 t cos2 t dt =
√
8 sin2 t cos2 t dt

=
√
2 sin(2t) dt.

Hence the arc length is given by

L =

∫
ds =

∫ π

4

0

√
2 sin(2t) dt = −

√
2

2
cos(2t)

∣∣∣π4
0

=

√
2

2
.
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Rotated about the x-axis, the surface area is given by

A =

∫ π

4

0
2π · sin2(t) ·

√
2 sin(2t) dt = 2

√
2π

∫ π

4

0
sin2(t) · sin(2t) dt

= 2
√
2π

∫ π

4

0

1− cos(2t)

2
· sin(2t) dt

=
√
2π

∫ π

4

0
sin(2t) dt+

√
2π

∫ π/4

0

1

2
sin(4t) dt

=
√
2π

[
−cos(2t)

2

]π/4
0

−
√
2π

[
−cos(4t)

8

]π
4

0

=
√
2π

(
1

2
−
(
1

8
+

1

8

))
=

√
2π

(
1

2
− 1

4

)
=

π
√
2

4
.

•

So far, our examples involve parametric curves easily expressed as the graph of a differentiable
function. The next example shows that parametric curves are more general than those defined by
a differentiable function, as seen in Chapter 8.

Example 2.3. Consider the parametrization

x = 3 cos(πt), 0 ≤ t ≤ 1

2
.

y = 5t+ 2.

Note that as t increases, the x-coordinate oscillates, while the y-coordinate increases. You can use
an online plotter, such as GeoGebra, to view the graph in the 2D plane.

The infinitesimal line element is given by

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

√
(−3π sin(πt))2 + 52 dt =

√
9π2 sin2(πt) + 25 dt.

Hence the arc length is given by

L =

∫
ds =

∫ 1/2

0

√
9π2 sin2(πt) + 25 dt.
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Rotated about the y-axis the surface area is given by

A =

∫ 1/2

0
2π · 3 cos(πt) ·

√
9π2 sin2(πt) + 25 dt (Substitution u = sin(πt), du = π cos(πt))

=

∫ 1/2

0
6 ·
√
9π2u2 + 25 du (Trig integral u =

5

3π
tan θ, du =

5

3π
sec2 θ dθ)

=

∫ arctan (3π/5)

0
6 ·
√
25 tan2 θ + 25

5

3π
· sec2 θ dθ =

∫ arctan (3π/5)

0
6 · 5 sec θ · 5

3π
sec2 θ dθ

=
25

π

∫ arctan (3π/5)

0
sec3 θ dθ

=
25

π

(
sec θ tan θ + ln | sec θ + tan θ|

)∣∣∣∣arctan (3π/5)

0

≈ 43.0705.

To evaluate the last quantity, use sec θ =
√
1 + tan2 θ =

√
25 + 9π2

5
. •

3. Polar Coordinates
[24] §10.3

• New Concept: Polar Coordinates{
x = r cos θ,

y = r sin θ.
⇐⇒

{
r =

√
x2 + y2,

θ = tan−1
(y
x

)
.

• Examples:
• Circles r = R or r = a cos θ + b sin θ.
• Cardioids r = a± a cos θ or r = a± a sin θ.
• Limaçons r = a± b cos θ or r = a± b sin θ, a ̸= b.

In this section, we will explore an alternative method for representing points on the Euclidean plane.

1. Curves in Polar Coordinates. In polar coordinates, a point (r, θ) is represented as:

x = r cos θ,

y = r sin θ.

Conversely:

r =
√
x2 + y2, if r > 0

θ = arctan
(y
x

)
.

When r < 0, the angle θ get added by π. See Example 3.2.

Example 3.1. Converting (x, y) = (1, 1) to polar coordinates Given (x, y) = (1, 1):

r =
√
12 + 12 =

√
2,

θ = tan−1

(
1

1

)
=

π

4
.

Thus, the polar coordinates are (
√
2, π/4).
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Note that the polar coordinate for this point is not unique. We can also pick (
√
2, 2π +

π

4
). •

Example 3.2. Convert (r, θ) = (−
√
2,

π

4
) to rectangular coordinates: We know

x = r cos θ = −
√
2 · 1√

2
= −1,

y = r sin θ = −
√
2 · 1√

2
= −1.

The point is symmetric to (1, 1) with respect to the origin, as shown in the previous example. You
can check that (r, θ) = (−

√
2, π +

π

4
) corresponds to (x, y) = (1, 1). •

Some curves, such as circles or spirals, can be expressed as simple functions in terms of polar
coordinates

F (r, θ) = 0.

We will explore how to compute arc length and surface area using polar coordinates.

2. Examples.

Example 3.3 (circle centered at the origin). In rectangular coordinates, a circle of radius R centered
at the origin is given by x2 + y2 = R2. In polar coordinates, this is given by r = R, θ ∈ [0, 2π].

x

y

∆θ

r

x

y

Figure 5. Circle of radius r

•

Example 3.4. Consider a circle centered at (0,
1

2
) with radius

1

2
, then x2 + (y − 1

2
)2 =

1

4
. We

convert this into polar coordinates by plug in x = r cos θ, y = r sin θ:

x2 + (y − 1

2
)2 =

1

4
⇐⇒ r2 cos2 θ + (r sin θ − 1

2
)2 =

1

4

⇐⇒ r2 cos2 θ + r2 sin2 θ − r sin θ +
1

4
=

1

4

⇐⇒ r2 − r sin θ = 0.

Since r > 0, this equation is equivalent to r = sin θ.
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x

y

1
2

O

x

y

θ = π
6

θ = π
3

θ = π
2

θ = 3π
4

Figure 6. Circle of radius
1

2
centered at (0,

1

2
)

Note that with the points winding around the full circle once when θ ∈ [0, π]. •

In general, in polar coordinates, the equations r = R or r = a cos θ + b sin θ represent circles.

Example 3.5 (r = a+ b sin θ). The polar curve r = a+ b sin θ gives a cardioid.

x

y

θ = π
6

θ = π
3

θ = π
2

θ = 3π
4

x

y

θ = π
6

θ = π
3

θ = π
2

θ = 3π
4

x

y

θ = π
6

θ = π
3

θ = π
2

θ = 3π
4

x

y

θ = π
6

θ = π
3

θ = π
2

θ = 3π
4

Figure 7. Convex limaçon r = 1+
1

2
sin θ, dimpled limaçon r = 1+

3

4
sin θ, cardioid

r = 1 + sin θ and limaçon with inner loop r = 1 + 2 sin θ.

•

Note that as b → 0, the polar curve converges to a circle centered at the origin.

In general, in polar coordinates, the equations r = a± b cos θ or r = a± b sin θ represent

• Cardioids: if a = b.
• Limaçons with an inner loop: if a < b.
• Limaçons without an inner loop: if a > b.
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4. Areas and Lengths in Polar Coordinates
[25] §10.4

[26]
Week 7

• Calculus with Polar Coordinates:

A =

∫ θ2

θ1

1

2
r2 dθ (area enclosed by r = f(θ))

ds =

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ =

√
r2 +

(
dr

dθ

)2

dθ.

L =

∫ θ2

θ1

ds,

S =

∫ θ2

θ1

dA =

∫ θ2

θ1

2πR ds. (surface area of revolution of a polar curve)

1. Tangent. Now consider a polar curve of the form r = f(θ). Then,

x = f(θ) cos θ, y = f(θ) sin θ.

The derivative of the parametrization with respect to θ is given by

dx

dθ
= f ′ cos θ − f sin θ,

dy

dθ
= f ′ sin θ + f cos θ.

We can compute its tangent by the chain rule:

dy

dx
=

dy

dθ
dx

dθ

=
f ′ cos θ + f sin θ

f ′ sin θ − f cos θ

Example 4.1. Let r = 1 + sin θ. Compute
dy

dx
.

x = (1 + sin θ) cos θ, y = (1 + sin θ) sin θ.

Differentiating,

dx

dθ
= cos θ · sin θ − (1 + sin θ) cos θ,

dy

dθ
= cos θ · cos θ − (1 + sin θ) sin θ.

Thus,
dy

dx
=

cos θ + 2 cos θ sin θ

cos2 θ − sin2 θ − sin θ
=

cos θ + sin(2θ)

cos(2θ)− sin θ
.

Note that:

lim
θ→ 3π

2

−

dy

dx
= lim

θ→ 3π
2

−

cos θ + sin(2θ)

cos(2θ)− sin θ
= lim

θ→ 3π
2

−

− cos θ + 2 cos(2θ)

−2 sin(2θ)− cos θ
= −∞. (L’H)

This means the tangent blows up at
3π

2
. •
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2. Area Enclosed by Polar Curves. For r = f(θ), the area of a sector is approximately

∆A ≈ 1

2
r2∆θ.

Using a Riemann sum,

A ≈
n∑

i=1

1

2
[f(ξi)]

2∆θ =⇒ A =

∫ θ2

θ1

1

2
[f(ξ)]2 dθ =

∫ θ2

θ1

1

2
r2 dθ.

Example 4.2. Find the area enclosed by one loop of the four-leaved rose r = cos(2θ).

A =
1

2

∫ π/4

−π/4
r2 dθ =

1

2

∫ π/4

0
cos2(2θ) dθ (Integrand is an even function)

=

∫ π/4

0

1 + cos(4θ)

2
dθ =

1

2

[
θ +

1

4
sin(4θ)

]π/4
−π/4

=
π

4
.

[27]
Typo22

O

r = 4
√
2 cos 2θ

x

y

Figure 8. Four-leaf r = cos(2θ)

•

3. Arc Length. We compute the infinitesimal line element ds as follows:

ds =

√
1 +

(
dy

dx

)2

dx =

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ.

Note that (
dx

dθ

)2

+

(
dy

dθ

)2

= (r′)2 cos2 θ − 2rr′ cos θ sin θ + r2 sin2 θ

+ (r′)2 sin2 θ + 2rr′ sin θ cos θ + r2 cos2 θ

= (r′)2 + r2, where r′ = f ′(θ).
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So

ds =

√
r2 +

(
dr

dθ

)2

dθ =

√(
f(θ)

)2
+
(
f ′(θ)

)2
dθ.

The arc length of a polar curve is given by:

L =

∫
ds =

∫ θ2

θ1

√(
f(θ)

)2
+
(
f ′(θ)

)2
dθ.

Example 4.3. Find the arc length of r = θ, 0 ≤ θ ≤ 1.

L =

∫ 1

0

√
θ2 + 1 dθ.

We have seen this integral in §7. Using the substitution θ = tanx, dθ = sec2 x dx, we have

L =

∫ π/4

0
secx sec2 x dx (IBP with u = secx, v = tanx)

= secx tanx−
∫ π/4

0
tanx · tanx secx dx = secx tanx−

∫ π/4

0
tan2 x secx dx

= secx tanx−
∫ π/4

0
(sec2 x− 1) secx dx = secx tanx− L+

∫ π/4

0
secx dx

This implies

2L = secx tanx+

∫ π/4

0
secx dx

= secx tanx+ ln | secx+ tanx|
∣∣∣π/4
0

=
1

2

(√
2 + ln

(
1 +

√
2
))

.

•
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5. Summary of Arc Length and Area Integrals

Here is a summary of the integrals we learned in Chapters 8 and 10. In practice, you only need to
remember the formulae in bold text; the others can be derived from them using the chain rule (for
differentiation) and the substitution rule (for integration).

ds surface area of revo-
lution dA

surface area enclosed
by curve

(x, y)

√
( dx)2 + ( dy)2

=

√
1 +

(
dy

dx

)2

dx

=

√(
dx

dy

)2

+ 1 dy

2πR ds,
R is a function of x
or y

∫ x2

x1

f(x) dx

or
∫ y2

y1

g(y) dy

(
x(t), y(t)

)
x′ =

dx

dt

y′ =
dy

dt

√
(x′)2 + (y′)2 dt 2πR ds,

R is a function of t

∫ t2

t1

f(x(t)) x′ dt

or
∫ t2

t1

g(y(t)) y′ dy

(r, θ),
r = r(θ),

r′ =
dr

dθ

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ

=
√
r2 + (r′)2 dθ

2πR ds,
R is a function of θ

∫∫∫ θ2

θ1

1

2
r2 dθ

Note that the last row can also be derived from the second row, but it is convenient to remember
them.
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V. Chapter 11: Infinite Sequences and Series
[28]
Week 8 In this chapter, we introduce sequences and series. We will focus on how to test for convergence

using tools like the Integral Test, the Comparison Tests, and the Ratio and Root Tests. We will
also discuss alternating and absolutely convergent series, along with strategies for analyzing them.
Finally, we will explore power series and Taylor and Maclaurin series, and how to use them to
approximate functions.

1. Sequences
[29] §11.1

• New Concept: Sequence, limit of sequence, sequence converges/diverges
• Example to memorize:

•

lim
n→∞

1

np
=


0 if p > 0

1 if p = 0

∞ if p < 0
•

lim
n→∞

rn =


0 if − 1 < r < 1

1 if r = 1

∞ if r > 1

DNE if r < −1

Definition 1.1. A sequence is an infinite list of members written with an order. We denote the
sequence as {a1, a2, . . . , an, . . .}, {an} or {an}∞n=1.

Example 1.2 (sequences).

(i) {1, 2, 3, 9, . . .}.
(ii) {7, 1, 8, 2, 8, . . .}.

•

Some sequences can be defined by giving a formula for the n-th term an.

Example 1.3 (sequences given by formulae).

(i) an =
1

n
, {an} = {1, 1

2
,
1

3
, . . .}.

(ii) an = (−1)n−1, {an} = {−1, 1,−1, 1, . . .}.
(iii) an =

1

3n
, {an} = {1

3
,
1

9
,
1

27
, . . .}.

•

Some sequences may not have a simple/explicit defining equation.

Example 1.4 (sequences without explicit formulae).

(i) an = the digit in the n-th decimal place of π.
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(ii) The Fibonacci sequence: a1 = 1, a2 = 1, an = an−1 + an−2

{an} = {1, 1, 2, 3, 5, 8, 13, 21, . . .}.

•

Remark 1.5. A sequence can be thought of as a function f defined only on the natural numbers.
Therefore, we can examine properties such as the graph and convergence. For example,

lim
n→∞

an = 0.

Definition 1.6. A sequence has limit L if for any ϵ > 0, there is an N such that if n > N , then
|an − L| < ϵ. (We write this as

∀ϵ > 0,∃N s.t. if n > N, then |an − L| < ϵ.

We say an converges to L and denote it as lim
n→∞

an = L.

Remark 1.7 (Intuition). lim
n→∞

an = ∞ means that for every positive number M , there is an integer
N such that if n > N , then an > M .

n

an

M

N

an

Figure 9. Illustration of the definition of limn→∞ an = ∞. Beyond some N , all an
exceed M .

Example 1.8 (limit of a sequence).

(i) lim
n→∞

n

n+ 1
= 0 = lim

n→∞

1

1 + 1/n
= 1.

lim
n→∞

1

np
=


0 if p > 0

1 if p = 1

∞ if p < 0

(ii)

lim
n→∞

rn =


0 if − 1 < r < 1

1 if r = 1

∞ if r > 1

DNE if r < −1

•
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1. Limit Laws for Sequences.

• Tools for evaluate limits: limit law, squeeze theorem,
• Continuous function commutes with limit:

f continuous =⇒ lim
n→∞

f(an) = f
(

lim
n→∞

an

)
.

If {an} and {bn} are convergent sequences, then

(i) lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn.
(ii) lim

n→∞
(can) = c lim

n→∞
an, c constant.

(iii) lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn.

(iv) lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
, provided lim

n→∞
bn ̸= 0.

(v) lim
n→∞

(an)
p =

(
lim
n→∞

an

)p
.

Note that if the convergent condition fails, the equality could also fail. For example, if an = (−1)n

and bn = 1
n . lim

n→∞
an = DNE, but lim

n→∞
anbn = 0.

Theorem 1.9 (Squeeze Theorem). If bn ≤ an ≤ cn holds for every n ≥ N (N is some natural
number) and lim

n→∞
bn = lim

n→∞
cn = L, then lim

n→∞
an = L.

n

Sequence values

L

bn

cn

an

bn, cn → L

Figure 10. Visualization of the Squeeze Theorem: if bn ≤ an ≤ cn and both bn
and cn converge to L, then an also converges to L.

Example 1.10. If an = (−1)n
1

n
, bn = − 1

n
and cn =

1

n
. Then bn ≤ an ≤ cn and lim

n→∞
bn =

lim
n→∞

cn = 0 implies lim
n→∞

an = 0 by the Squeeze Theorem. •

Theorem 1.11.

(i) If lim
n→∞

|an| = 0 then lim
n→∞

an = 0.
(ii) Continuous function commutes with limit. If f is continuous, then lim

n→∞
an = L implies

lim
n→∞

f(an) = f
(
lim
n→∞

an

)
= f(L).
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Example 1.12. (i) lim
n→∞

sin

(
1

n

)
= sin

(
lim
n→∞

1

n

)
= sin(0) = 0.

(ii) lim
n→∞

ln(n+ 2)

ln(1 + 4n)
. Note that this is same as

lim
x→∞

ln(x+ 2)

ln(1 + 4x)
= lim

x→∞

1
x+2
4

1+4x

= lim
x→∞

1 + 4x

4(x+ 2)
= 1. (L’Hôpital’s rule)

(iii)

lim
x→∞

(
1 +

1

n

)n

= lim
x→∞

e(1+
1
n)

n

= e
lim
x→∞

(
1 +

1

n

)n

= e.

(Can apply L’Hôpital’s rule to compute the limit)

•

2. Series
[30] §11.2

• New concept: series, partial sum, converges/diverges
• Examples to memorize:

• Geometric series

∞∑
n=0

rn =


1

1− r
if |r| < 1,

∞ if r ≥ 1

DNE if r ≤ −1.

• Harmonic series
∞∑
n=1

1

n
diverges.

• Tools to study series: Series laws,
∑

an converges =⇒ an → 0.

Definition 2.1. We call
∞∑
n=1

an or
∑

an a series, and

SN =

N∑
n=1

an = a1 + a2 + . . .+ aN

the partial sum .

Remark 2.2. Note that SN is itself a sequence. So it makes sense to talk about whether SN

converges or not.

Definition 2.3. The series
∑

an is called convergent if its partial sum is convergent. Otherwise,∑
an is called divergent .
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Example 2.4 (Geometric Series). Consider an = rn, where r is the common ratio.

a0 = 1, S0 = a0 = 1,

a1 = r, S1 = a0 + a1 = 1 + r,

a2 = r2, S2 = a0 + a1 + a2 = 1 + r + r2.

...

SN = 1 + r + r2 + . . .+ rN .

Let RN =
N∑

n=0

rn = 1 + r + r2 + . . .+ rN , then

rRN = r + r2 + . . .+ rN+1,

RN − rRN = 1− rN+1,

RN =
1− rN+1

1− r
, for r ̸= 1.

Thus,

∞∑
n=0

rn =


1

1− r
if |r| < 1,

∞ if r ≥ 1

DNE if r ≤ −1.

Also, note that
∞∑
n=1

rn =
r

1− r
because

∞∑
n=0

rn = 1 +
∞∑
n=1

rn. Thus, the starting point matters. •

Example 2.5. Compute
∞∑
n=1

22n · 61−n using the formula from the previous example.[31]
Typo22

∞∑
n=1

22 · 61−n =

∞∑
n=1

4n · 6 ·
(
1

6

)n

= 6 ·
∞∑
n=1

(
4

6

)n

= 6 ·
∞∑
n=1

(
2

3

)n

(Here r =
2

3
)

= 6 ·

2

3

1− 2

3

= 6 · 2 = 12.

•
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Example 2.6 (Harmonic Series).
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . .

Partial sums:

S2 = 1 +
1

2
,

S4 = 1 +
1

2
+

1

3
+

1

4

> 1 +
1

2
+

1

4
+

1

4
= 1 +

2

2
,

S8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
= 1 +

3

2
,

S2n = 1 +
1

2
+

1

3
+ . . .+

1

2n
> 1 +

n

2

n→∞−−−→ ∞.

Hence,
∞∑
n=1

1

n
diverges. •

Example 2.7 (Telescope series). Check that
∞∑
n=1

1

n(n+ 1)
= 1.

We note that:
1

n(n+ 1)
=

1

n
− 1

n+ 1
,

SN =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1

n→∞−−−→ 1.

Hence,
∞∑
n=1

1

n(n+ 1)
converges to 1. •

Theorem 2.8. If
∞∑
n=1

an and
∞∑
n=1

bn converge, and c is a constant, then

(i)
∞∑
n=1

an ± bn =

∞∑
n=1

an ±
∞∑
n=1

bn.

(ii)
∞∑
n=1

can = c
∞∑
n=1

an.

Example 2.9. Evaluate
∞∑
n=1

3

n(n+ 1)
+

1

2n
.

We have
∞∑
n=1

1

2n
=

1

1− 1

2

− 1 = 2− 1 = 1 and
∞∑
n=1

1

n(n+ 1)
= 1.

So the original series converges to 3 · 1 + 1 = 4. •
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Theorem 2.10. If
∞∑
n=1

an converges, then lim
n→∞

an = 0.

Proof. By definition, we know if the series converges to some real number L, we have

lim
n→∞

SN−1 = lim
n→∞

SN = L

=⇒ lim
N→∞

aN = lim
N→∞

(SN − SN−1) = lim
N→∞

SN − lim
n→∞

SN−1 = L− L = 0.

□

Corollary 2.11 (The Divergent Test). If lim
n→∞

an ̸= 0, then
∞∑
n=1

an diverges.

Remark 2.12. Note that when lim
n→∞

an = 0, there is no conclusion. For example,

lim
n→∞

1

n(n+ 1)
= 0, we know

∞∑
n=1

1

n(n+ 1)
= 1.

lim
n→∞

1

n
= 0, but

∞∑
n=1

1

n
diverges.

Example 2.13 (The Divergent Test). (i)
∞∑
n=1

(−1)n. (ii)
∞∑
n=1

(
1 +

1

n

)n

. (iii)
∞∑
n=1

n

n+ 1
. •

3. The Integral Test and Estimates of Sums
[32] §11.3

• New tool for testing convergency:
• The Integral Test f positive, continuous, decreasing for x ≥ 1, and let an = f(n).

Then:
∞∑
n=1

an converges ⇐⇒
∫ ∞

1
f(x) dx converges.

• Error estimate:∫ ∞

N+1
f(x) dx ≤ RN = S − SN ≤

∫ ∞

N
f(x) dx.

We have been computing the exact value of a series so far for some special cases. However, in
general, this is quite difficult. In those cases, we are interested in finding an estimate.

1. The Integral Test.

Theorem 3.1. Suppose 1 f(x) > 0 is a 2 continuous and 3 decreasing function for x ≥ 1, and
4 let an = f(n). Then:

∞∑
n=1

an converges ⇐⇒
∫ ∞

1
f(x) dx converges.

Moreover:
∞∑
n=1

an ≤ a1 +

∫ ∞

1
f(x) dx.
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The error of this estimate is given by

RN =
∞∑
n=1

an −
N∑

n=1

an =
∞∑

n=N+1

an.

We have ∫ ∞

N+1
f(x) dx ≤ RN ≤

∫ ∞

N
f(x) dx.

x

y

f(x)

a1 a2 a3 a4 a5 a6

Left Riemann Sum

x

y

f(x)

a1 a2 a3 a4 a5 a6

Right Riemann Sum

Figure 11. Upper and lower bounds for the Integral Test

Example 3.2.
∞∑
n=1

1

n2
converges.

Let f(x) =
1

x2
. For x ≥ 1, f(x) is continuous, positive, and decreasing. Then

∫ ∞

1

1

x2
dx converges

implies
∞∑
n=1

1

n2
converges. •

Example 3.3.
∞∑
n=1

1

np

{
converges if p > 1

diverges if p ≤ 1.

Recall p > 1,
∫∞
1

1

xp
dx converges. For p ≤ 1, it diverges. Apply the Integral Test. •

Example 3.4.
∞∑
n=1

1

n2 + 1
converges •

Let f(x) =
1

x2 + 1
> 0. For x ≤ 1, we check f is continuous and decreasing:

f ′(x) = −(x2 + 1)−2 · 2x < 0, x ≥ 1.

Apply the Integral Test as follows:∫ ∞

0

1

x2 + 1
dx = lim

t→∞

(
arctanx|t1

)
= lim

t→∞

(
arctan t− π

4

)
=

π

2
− π

4
=

π

4
≤ ∞.

So the series converges.

Example 3.5. There is an example in the discussion worksheet regarding the error estimate. See
Question 2 in Worksheet w8-2. •
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4. The Comparison Tests
[33] §11.4

[34]
Week 10

• New tools for testing convergency:
• The (Direct) Comparison Test (DCT) for Series: 1 0 ≤ an ≤ bn 2 for all
n ≥ N , then

∞∑
n=N

bn converges =⇒
∞∑

n=N

an converges,

∞∑
n=N

an diverges =⇒
∞∑

n=N

bn diverges.

• The Limit Comparison Test (LCT): 1 an > 0 and bn > 0 2 for all n ≥ N , and
3 lim

n→∞

an
bn

= c, where 4 0 < c < ∞. Then

∞∑
n=N

an converges ⇐⇒
∞∑

n=N

bn converges.

The idea of the Comparison Test for sequences is similar to that for integrals.

1. The (Direct) Comparison Test for Series (DCT).

Theorem 4.1. Suppose
∑

an and
∑

bn are series such that 1 0 < an ≤ bn 2 for all n ≥ N .
Then:

• If
∞∑

n=N

bn converges, then
∞∑

n=N

an converges.

• If
∞∑

n=N

an diverges, then
∞∑

n=N

bn diverges.

Remark 4.2. Here we can compare the Direct Comparison Test for series with the Comparison
Test for integrals:

• an and bn play the roles of f and g.
• Integrals are replaced by summations.
• The lower bound x ≥ a is replaced by n ≥ N .

Example 4.3. Show that
∞∑
n=1

an =

∞∑
n=1

5

2n2 + 4n+ 3
converges.

Step 1. Note that 2n2 + 4n+ 3 ≥ 2n2 for n ≥ 1. This implies

1 0 < an :=
5

2n2 + 4n+ 3
≤ 5

2n2
=: bn 2 for n ≥ 1.

Step 2. We apply the DCT to conclude that
∞∑
n=1

5

2n2
=

5

2

∞∑
n=1

1

n2
< ∞. =⇒

∞∑
n=1

an converges.

•
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Example 4.4. Show that
∞∑
n=1

bn =

∞∑
n=1

lnn

n
diverges.

Step 1. Note that lnn > 1 for n > e. We take 2 N = 3, which is the next integer after e. This
implies

1 0 < an :=
1

n
≤ bn

lnn

n
, when 2 n ≥ 3.

Step 2. To show that
∞∑
n=3

aN =

∞∑
n=3

1

n
diverges, note that

∞∑
n=3

1

n
= −1

1
− 1

2
= harmonic series (divergent) − finite number.

So
∞∑
n=3

an diverges

Step 3. We apply the DCT to conclude that
∞∑
n=3

1

n
diverges. =⇒

∞∑
n=3

bn converges.

Step 4. To show that
∞∑
n=1

bn diverges, note that

∞∑
n=1

bn = (b1 + b2) +

∞∑
n=3

bn = finite number + divergent series.

So
∞∑
n=1

bn diverges •

2. The Limit Comparison Test (LCT).

Theorem 4.5. Suppose
∑

an and
∑

bn are series with 1 an > 0 and bn > 0, and 2 lim
n→∞

an
bn

= c,

where 3 0 < c < ∞. Then
∞∑

n=N

an converges ⇐⇒
∞∑

n=N

bn converges.

Remark 4.6. Note that the lim
n→∞

an
bn

= c is saying an and cbn have the same growth rate as n → ∞.

Example 4.7. Show that
∞∑
n=1

an =
∞∑
n=1

1

2n − 1
converges.

Take bn =
1

2n
. Then

lim
n→∞

an
bn

= lim
n→∞

1

2n − 1
1

2n

= lim
n→∞

2n

2n − 1
= lim

n→∞

1

1− 1

2n

= 1.
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Apply the Limit Comparison Test, we conclude that
∞∑
n=1

bn converges implies
∞∑
n=1

1

2n − 1
converges.

•

Example 4.8. Show that
∞∑
n=1

an =

∞∑
n=1

2n2 + 3n√
5 + n5

diverges.

Take bn =
2n2

n5/2
=

2√
n

(this is the dominant part). Then

lim
n→∞

an
bn

= lim
n→∞

2n2 + 3n√
5 + n5

2√
n

= lim
n→∞

2n5/2 + 3n1/2

2
√
5 + n5

= lim
n→∞

2 +
3

n

2

√
5

n5
+ 1

=
2

2
= 1.

Apply the Limit Comparison Test, we conclude that
∞∑
n=1

bn diverges implies
∞∑
n=1

an diverges. •

5. Alternating Series
[35] §11.5

• New Concept: Alternating series
• The Alternating Series Test:

an 1 positive, 2 decreasing, 3 lim
n→∞

an = 0. =⇒
∞∑
n=0

(−1)nan converges.

• Error estimate: |RN | = |S − SN | ≤ an+1.

• Example to memorize: The alternating harmonic series
∑ (−1)n+1

n
converges.

So far, we have studied series with positive terms. In this section, we will study series whose terms
are alternating series, such as

•
∑ (−1)n+1

n
(alternating harmonic series).

•
∑

(−1)nan, where an > 0 and terms alternate in sign.

1. The Alternating Series Test. The following theorem tells us how to determine if an alter-
nating series converges or diverges.

Theorem 5.1. Given an alternating series
∞∑
n=0

(−1)nan, if

1 an > 0, 2 an+1 ≤ an for all n, and 3 limn→∞ an = 0,

then
∞∑
n=0

(−1)nan converges.

Proof. Without loss of generality, we prove this for the series S =
∑∞

n=1(−1)n+1an. The other case
follows by shifting the sequence or multiplying the series by −1.
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Let SN =
∑N

n=1(−1)n+1an By 2 we have an − an+1 ≥ 0.

S2 = a1 − a2 ≥ 0

S4 = S2 + a3 − a4 ≥ S2 as a3 − a4 ≥ 0

...
S2n = S2n−2 + a2n−1 − a2n ≥ S2n−2 as a2n−1 − a2n ≥ 0

So, {S2n} is an increasing sequence.

Note that

S2n = a1 − a2 + a3 − a4 + a5 − · · ·+ a2n−1 − a2n

= a1 − (a2 − a3)− (a4 − a5) + · · · − (a2n−2 − a2n−1)− a2n

≤ a1

Since each of the quantities in parentheses and a2n are positive. So {S2n} is an increasing sequence
bounded from above. So the limit exists.

lim
n→∞

S2n = S.

We can apply the same procedure to S2n+1, and see the limit also exists. Moreover,

lim
n→∞

S2n+1 = lim
n→∞

(S2n + a2n+1) = lim
n→∞

S2n + lim
n→∞

a2n+1 = S + 0 = S.

So, alternating series is convergent.

□

Remark 5.2. From the above proof, we see that if lim
n→∞

an diverges, the series also diverges. So the
diverges test still holds.

Example 5.3 (Alternating Harmonic Series). Show that
∞∑
n=0

(−1)n+1

n
converges.

We first check that the Alternating Series Test applies:

1 an =
1

n
> 0,

2 an+1 =
1

n+ 1
<

1

n
= an for all n, and

3 lim
n→∞

an = 0.

By the Alternating Series Test tells us that the series converges. •

Example 5.4. Show that
∞∑
n=0

(−1)nn2

n3 + 1
converges.

We first check that the Alternating Series Test applies:

1 an =
n2

n3 + 1
> 0.
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2 an+1 < an for n ≥ 2 because the function f(x) =
x2

x3 + 1
is decreasing (not obvious, we

compute the derivative):

f ′(x) =
x(2− x3)

(x3 + 1)2
< 0, where x >

3
√
2.

3 lim
n→∞

an = lim
n→∞

n2

n3 + 1
= lim

n→∞

1

n

1 +
1

n3

= 0.

Apply the Alternating Series Test to
∞∑
n=2

(−1)nan (because we need n ≥ 2), we conclude that

∞∑
n=2

(−1)nan converges. So
∞∑
n=0

(−1)nan = a0 − a1 +

∞∑
n=2

(−1)nan also converges. •

2. Estimating alternating series.

Theorem 5.5 (Alternating series estimation). Given
∞∑
n=0

(−1)nan, an > 0 satisfying

1 an > 0. 2 an+1 ≤
1

n
= an for all n. 3 lim

n→∞
an = 0.

Then |RN | = |S − SN | ≤ an+1.

Proof. From the proof of the Alternating Series Test, we know S is in between SN and SN+1 for all
N . So

|RN | = |S − SN | ≤ |SN+1 − SN | = aN+1.

□
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6. Summary I

So far, we have learned different ways to determine the convergence of a series with positive terms
or alternating terms.

1. Summary of the Convergence Tests in Previous Sections.

(i) Definition: computing lim
N→∞

SN

(ii) The Divergence Test: lim
n→∞

an ̸= 0 =⇒
∑
n

an diverges

The following only works for series with positive terms.
(iii) The Integral Test:

f(x) 1 positive, 2 continuous, 3 decreasing 4 for x ≥ N , and 5 an = f(n). Then:
∞∑

n=N

an converges ⇐⇒
∫ ∞

N
f(x) dx converges.

(iv) The Direct Comparison Test: 1 0 < an ≤ bn 2 for all n ≥ N . Then:

• If
∞∑

n=N

bn converges, then
∞∑

n=N

an converges.

• If
∞∑

n=N

an diverges, then
∞∑

n=N

bn diverges.

(v) The Limit Comparison Test:
1 an > 0 and bn > 0, and 2 lim

n→∞

an
bn

= c, where 3 0 < c < ∞. Then

∞∑
n=N

an converges ⇐⇒
∞∑

n=N

bn converges.

The following only works for series with alternating terms.
(vi) The Alternating Series Test: an 1 positive, 2 decreasing, 3 lim

n→∞
an = 0. Then

∞∑
n=0

(−1)nan converges.

2. Steps to Apply Convergence Tests.

(i) Determine the type of the series. (e.g. harmonic, geometric, positive, alternating)
(ii) Decide which test to use.

For example, if the series has negative terms, you cannot apply the integral test.
(iii) Check all the assumptions hold. Be careful with the number N .

(iv) Apply the test to
∞∑

n=N

bn.

If you are given
∞∑
n=1

bn, N ̸= 1, then use

∞∑
n=1

an =

N−1∑
n=1

an +

∞∑
n=N

an = finite number + convergence or divergence series
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(v) Conclusion.

3. Error estimate.

RN = S − SN

(i) The integral test: ∫ ∞

N+1
f(x) dx ≤ RN ≤

∫ ∞

N
f(x) dx.

(ii) The Alternating Series Test: |RN | ≤ an+1.

There are two types of estimation questions we could ask.

(i) Given N , what is the error bound? For this question, apply the Error estimate directly.
(ii) Given an upper bound ϵ, what is the smallest integer N that makes |RN | < ϵ? For this

question, use |RN | < ϵ to give a lower bound for N .

In the next several sections, we will study convergence tests for more general series.

7. Absolute Convergence and the Ratio and Root Tests
[36] §11.6

[37]
Week 11

• New Concept: absolute convergence and conditional convergence.
• New tool for testing convergency: The Ratio/Root Test:

Lratio = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , Lroot = lim
n→∞

n
√
|an|.

Then:
• If L < 1, the series converges absolutely.
• If L > 1, the series diverges.
• If L = 1, the test is inconclusive.

Definition 7.1. A series
∑

an is called absolutely convergent if the series of absolute values∑
|an| converges.

Definition 7.2. A series
∑

an is called conditionally convergent if it converges but is not
absolutely convergent.

Note that absolute convergence is stronger than convergence

If
∑

|an| converges, then
∑

an converges.

Proof. Observe that:

−an ≤ |an| ≤ an =⇒ 0 ≤ an + |an| ≤ 2|an|.

We call An = an + |an|, Bn = 2|an|. By the Comparison Test,
∑

Bn converges implies
∑

|An|
converges. Then ∑

an =
∑

An −
∑

|an| < ∞.

□
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1. Examples.

Example 7.3. The series
∑ (−1)n+1

n
is conditionally convergent because:

•
∑ 1

n
diverges (harmonic series).

•
∑ (−1)n+1

n
converges by the Alternating Series Test.

•

Example 7.4. The series
∑ (−1)n+1

n2
is absolutely convergent because:

•
∑ 1

n2
converges by the p-series test with p = 2 > 1.

•
∑ (−1)n+1

n2
converges by the Alternating Series Test.

•

2. The Ratio and Root Tests.

Theorem 7.5 (The Ratio Test). Given a series
∑

an, let:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Then:

• If L < 1, the series converges absolutely.
• If L > 1, the series diverges.
• If L = 1, the test is inconclusive.

Theorem 7.6 (The Root Test). Given a series
∑

an, let:

L = lim
n→∞

n
√

|an|.

Then:

• If L < 1, the series converges absolutely.
• If L > 1, the series diverges.
• If L = 1, the test is inconclusive.

Remark 7.7. (i) Note that we have absolute convergence when L < 1.
(ii) We won’t have time to prove this in class. If you’re interested in seeing the proof, check Paul’s

online notes:
• Ratio Test Proof
• Root Test Proof

(iii) The case when L = 1 is more complicated, as there are examples where the series may converge
absolutely, converge conditionally, or diverge. Consider the following examples for the Ratio
Test:

57

https://tutorial.math.lamar.edu/Classes/CalcII/RatioTest.aspx#Series_Ratio_Proof
https://tutorial.math.lamar.edu/classes/calcii/roottest.aspx#Series_Root_Proof


• Conditional Convergence: For the series
∞∑
n=1

(−1)n+1

n
, we compute the limit:

lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+2

n+ 1
(−1)n+1

n

∣∣∣∣∣∣∣∣ = lim
n→∞

n

n+ 1
= 1.

• Absolute Convergence: For the series
∞∑
n=1

(−1)n+1

n2
, we compute the limit:

lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+2

(n+ 1)2

(−1)n+1

n2

∣∣∣∣∣∣∣∣ = lim
n→∞

n2

n2 + 2n+ 1
= 1.

• Divergence: For the series where an = 1 for all n, we observe divergence.
Try to come up with your own examples for the Root Test.

(iv) Prototype for both tests are the geometric series:

• Lratio = limn→∞

∣∣∣∣rn+1

rn

∣∣∣∣ = limn→∞ |r| = |r|.

• Lroot = limn→∞
n
√
|r|n = limn→∞ |r| = |r|.

Recall that |r| < 1 corresponds to convergent series; and that |r| > 1 corresponds to divergent
series.

3. Examples.

Example 7.8.
∞∑
n=2

n2

(2n− 1)!

L = lim
n→∞

∣∣∣∣∣∣∣∣
(n+ 1)2

(2(n+ 1)− 1)!

n2

(2n− 1)!

∣∣∣∣∣∣∣∣ = lim
n→∞

(n+ 1)2

(2n+ 1)(2n)n2
= 0 < 1.

Hence the series converges absolutely by the Ratio Test. •

Example 7.9.
∞∑
n=2

(−1)n

n2 + 1

L = lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+1

(n+ 1)2 + 1

(−1)n

n2 + 1

∣∣∣∣∣∣∣∣ = lim
n→∞

n2 + 1

2n2 + 2n+ 2
= 1.

The Ratio Test makes no conclusion. •

Instead, one can use the Alternating Series Test to conclude that this series converges and the

Comparison Test (with An =
1

n2 + 1
≤ Bn =

1

n2
) for absolute convergence.
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Example 7.10.
∞∑
n=0

(
3n+ 1

4− 2n

)2n

L = lim
n→∞

∣∣∣∣∣∣ n

√(
3n+ 1

4− 2n

)2n
∣∣∣∣∣∣ = lim

n→∞

(
3n+ 1

4− 2n

)2

= lim
n→∞

9n2 + 6n+ 1

4n2 − 16n+ 16
=

9

4
> 1.

Hence the series diverges absolutely by the Root Test. • [38]
Typo22

Example 7.11.
∞∑
n=4

(
1 +

1

n

)−n2

L = lim
n→∞

∣∣∣∣∣∣∣∣
(n+ 1)2

(2(n+ 1)− 1)!

n2

(2n− 1)!

∣∣∣∣∣∣∣∣ = lim
n→∞

(n+ 1)2

(2n+ 1)(2n)n2
= 0 < 1.

Hence the series converges absolutely by the Ratio Test. Hence the series converges absolutely by
the Root Test. •

For strategy of choosing converges tests, see "Supplementary Resources" on course webpage.

8. Power Series
[39] §11.8

Definition 8.1. A power series centered at a is a series of the form
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + . . .

Here, x is a variable, and cn are coefficients.

Example 8.2. Take a = 0, then
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · .

This is a polynomial with infinitely many terms. Moreover if cn = 1 for all n, then

f(x) = 1 + x+ x2 + · · · =
∞∑
n=0

xn.

This is a geometric series, we know it converges when |x| < 1. •

The above example shows that a power series may converge for some values of x and diverge for
others. We use convergence tests to determine this.

Example 8.3. When does
∞∑
n=0

(x− 3)n

n
converges?

Using the Ratio Test:

L = lim
n→∞

∣∣∣∣∣∣∣∣
(x− 3)n+1

n+ 1
(x− 3)n

n

∣∣∣∣∣∣∣∣ = lim
n→∞

|x− 3|

1 +
1

n

= |x− 3|.

59



Hence the series converges absolutely when |x− 3| < 1 (i.e. 2 < x < 4) and |x− 3| > 1 (i.e. x < 2
or x > 4) diverges by the Ratio Test.

Now we analysis the boundary cases:

• When x = 2,
∑

an =
(−1)n

n
converges.

• When x = 4,
∑

an =
1

n
diverges.

Conclusion: the series converges when x ∈ [2, 4). •

Theorem 8.4. For a power series
∑

cn(x− a)n, there are three possibilities:

(i) The series converges only at x = a.
(ii) The series converges for all x.
(iii) There exists R > 0 such that the series converges for |x− a| < R and diverges for |x− a| > R.

Definition 8.5. The number R is called the radius of convergence . The interval of conver-
gence is the interval that consists of all values of x for which the power series converges.

Example 8.6. For the series
∑ (x− 3)n

n
, the radius of convergence is R = 2, and the interval of

convergence is [2, 4)]. •

Example 8.7. Compute the radius of converges and integral of converges for
∞∑
n=0

n(x+ 2)n

3n
.

Using the Ratio Test:

L = lim
n→∞

∣∣∣∣∣∣∣∣
(n+ 1)(x+ 2)n+1

3n+1

n(x+ 2)n

3n

∣∣∣∣∣∣∣∣ = lim
n→∞

|x+ 3|

3

(
1 +

1

n

) =
|x+ 2|

3
.

The series converges when
|x+ 2|

3
< 1, so the radius of converges is R = 3.

Now we analysis the boundary cases:

• When x = −5,
∑

an =
(−1)nn

3
diverges.

• When x = 1,
∑

an =
n

3
diverges.

So the interval of convergence is x ∈ (−5, 1). •

9. Representation of Functions by Power Series
[40] §11.9

In this section, we will learn how to represent some functions as power series. An application of this
technique is the approximation of certain integrals that do not have elementary antiderivatives.

We start by discussing how to find the power series representation through substitution, integration,
and differentiation.
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Recall we have seen that

1

1− u
=

∞∑
n=0

un, for |u| < 1.

Example 9.1. Find the power series for
1

1 + x2
.

1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)2 =
∞∑
n=0

(−1)nx2n, for |x| < 1.

Take u = (−x2), then |u| = | − x2| = x2 < 1. So we have |x| < 1. •

Example 9.2. Find the power series for
1

2 + x
.

1

2 + x
=

1

2

1

1 +
x

2

=
1

2

1

1−
(
−x

2

)
(If |x| < 2, then |u| =

∣∣∣x
2

∣∣∣ < 1, we may use the Equation of
1

1− u
.)

=
1

2

∞∑
n=0

(
−x

2

)n
=

∞∑
n=0

(−1)n

2n+1
(x)n.

•

1. Term-by-Term Differentiation and Integration.

Theorem 9.3. If
∞∑
n=0

cn(x − a)n has radius of convergence R > 0, then f(x) =
∞∑
n=0

cn(x − a)n is

differentiable within (a−R, a+R).

f ′(x) =
∞∑
n=1

ncn(x− a)n−1,

∫
f(x) dx = C +

∞∑
n=0

ncn
(x− a)n+1

n+ 1
.

Proof. One can prove this by computing the differentiation:

d

dx

( ∞∑
n=0

cn(x− a)n

)
=

∞∑
n=1

ncn(x− a)n−1, for |x− a| < R.

and the integration:∫ ∞∑
n=0

cn(x− a)n dx = C +

∞∑
n=0

cn
n+ 1

(x− a)n+1, for |x− a| < R.

□
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2. Examples.

Example 9.4.

1

(1− x)2
=

dx

dx

(
1

1− x

)
=

dx

dx

∞∑
n=0

xn =

∞∑
n=1

nxn−1 when |x| < 1.

•
Example 9.5. Recall by the Fundamental Theorem of Calculus,

ln(1 + x)− ln(1 + 0) =

∫ x

0

1

1 + t
dt.

This implies (note that ln(1 + 0) = 0) for |x| < 1,

ln(1 + x) =

∫ x

0

1

1− (−t)
dt =

∫ x

0

∞∑
n=0

(−t)n dt

=

∞∑
n=0

∫ x

0
(−1)ntn dt =

∞∑
n=0

(−1)n
[
tn+1

n+ 1

]x
t=0

=

∞∑
n=0

(−1)n
xn+1

n+ 1
.

Thus:

ln(1 + x) =

∞∑
n=0

(−1)n
xn+1

n+ 1
, for |x| < 1.

•
Example 9.6. Another solution for solving ln(1 + x).

ln(1 + x) =

∫ ∞∑
n=0

(−1)nxn dx (Take u = −t, need |u| = | − t| < 1, i.e. |t| < 1)

=

∫ ∞∑
n=0

(−1)nxn dx =

∞∑
n=0

(−1)n
∫

xn dx =

∞∑
n=0

(−1)n
xn+1

n+ 1
+ C, when |x| < 1.

To determine C, take x = 0, we have

ln(1 + 0) = 0 = C.

•
Example 9.7 (arctan(x)). the Fundamental Theorem of Calculus,

arctan(x)− arctan(0) =

∫ x

0

1

1 + t2
dt.

This implies (note that arctan(0) = 0) for |x| < 1,

arctan(x) =

∫ x

0

1

1 + t2
dt =

∫ x

0

∞∑
n=0

(−t2)n dt

=

∞∑
n=0

∫ x

0
(−1)nt2n dt =

∞∑
n=0

(−1)n
[
t2n+1

2n+ 1

]x
t=0

=
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, when |x| < 1.

Thus:

arctan(x) =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
, for |x| < 1.

•
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Example 9.8. Another solution for solving arctan(x).

arctan(x) =

∫
1

1 + x2
=

∫ ∞∑
n=0

(−x2)n dx =
∞∑
n=0

(−1)n
∫

x2n dx

=

∫ ∞∑
n=0

(−1)n
x2n+1

2n+ 1
dx+ C, when |x| < 1.

To determine C, take x = 0, we have

arctan(0) = 0 = C.

•

10. Taylor and Maclaurin Series
[41]
§11.10

Theorem 10.1. Suppose the function f(x) has a power series representation at a given by:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, |x− a| < R.

Then cn = f (n)(a)
n! .

Proof. We compute derivatives:

f ′(x) =

∞∑
n=1

cnn(x− a)n−1,

f ′′(x) =
∞∑
n=2

cnn(n− 1)(x− a)n−2.

Taking x = a yields

f ′(a) = c1, (C1 is the only non-vanishing term)

f ′′(a) = 2!c2,

...

f (n)(a) = n!cn.

□

Definition 10.2. We define the Taylor series of f centered at a as:

Tf (x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, |x− a| < R.

When a = 0, this is called the Maclaurin series:

Tf (x) =

∞∑
n=0

f (n)(0)

n!
xn.
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Example 10.3 (f(x) = ex at a = 0). The derivatives of f(x) are given by

f (n)(x) = ex for all n.

So ex =

∞∑
n=0

xn

n!
. We compute the radius of convergence:

L = lim
n→∞

∣∣∣∣∣∣∣∣
xn+1

(n+ 1)!
xn

n!

∣∣∣∣∣∣∣∣ = 0 < 1.

The radius of convergence is ∞. •

Example 10.4 (f(x) = sin(x) at a = 0). The derivatives of f(x) are given by

f ′(x) = cos(x), f ′′(x) = − sin(x), f ′′′(x) = − cos(x), f (4)(x) = sin(x).

Higher order derivatives repeat. So

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

(Note that sin is an odd function). The radius of convergence R = ∞, as

L = lim
n→∞

∣∣∣∣∣∣∣∣
x2n+3

(2n+ 3)!
x2n+1

(2n+1)!

∣∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ x2

(2n+ 3)(2n+ 2)

∣∣∣∣ = 0 < 1.

•

Example 10.5 (f(x) = cos(x) at a = 0). Check that

f ′(x) = − sin(x), f ′′(x) = − cos(x), f ′′′(x) = sin(x), f (4)(x) = cos(x).

So

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
, even function.

The radius of convergence is again R = ∞. •

11. Applications of Taylor Polynomials
[42]
§11.11

1. Estimating Integrals. Let’s consider a particular integral:

Example 11.1. Compute
∫∞
0 e−x2

dx.

Step 1. Get the Maclaurin series of
∫∞
0 e−x2

dx.. Recall the Maclaurin series expansion for e−x2 :

e−x2
=

∞∑
n=0

(−1)nx2n

n!
.
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Integrating term by term:∫
e−x2

dx =

∫ ∞∑
n=0

(−1)nx2n

n!
dx =

∞∑
n=0

(−1)n

n!

∫
x2n dx

=
∞∑
n=0

(−1)n

n!
· x2n+1

2n+ 1
+ C.

Evaluate at x = 0 and x = 1 gives∫ 1

0
e−x2

dx =

∞∑
n=0

(−1)n

n!
· 12n+1

2n+ 1
+ C −

( ∞∑
n=0

(−1)n

n!
· 02n+1

2n+ 1
+ C

)
=

∞∑
n=0

(−1)n

(2n+ 1)n!
.

To estimate the integral, we use the first five terms:∫ ∞

0
e−x2

dx ≈ 1− 1

3
+

1

10
− 1

42
+

1

216
≈ 0.7475.

Using the alternating series estimation theorem, the error is bounded by:

|R| < |a6| =
1

(2 · 6 + 1)!
< 0.001.

•

2. Approximating Functions. We denote the N -th degree Taylor polynomial of f at a as:

TN (x) =

N∑
n=0

f (n)(a)

n!
(x− a)n.

For example, N = 1

T1(x) = f(a) + f ′(a)(x− a).

This is the tangent line of the function f .

The error in this approximation is given by:

RN (x) = f(x)− TN (x).

Taylor’s inequality states:

|RN (x)| ≤ M |x− a|N+1

(N + 1)!
,

where M is an upper bound on |f (N+1)(x)| for x in the interval of interest.

Example 11.2. Let f(x) = 3
√
x with N = 2 at a = 8.

We compute:

f(x) = 3
√
x, f ′(x) =

1

3
x−2/3, f ′′(x) = −2

9
x−5/3.

f(8) =
3
√
8 = 2, f ′(8) =

1

3
· 8−2/3 =

1

3
· 1
4
=

1

12
, f ′′(8) = −2

9
· 8−5/3 = −2

9
· 1

32
= − 1

144
.

Then the second-degree Taylor polynomial is:

T2(x) = f(8) + f ′(8)(x− 8) +
f ′′(8)

2
(x− 8)2 = 2 +

1

12
(x− 8)− 1

288
(x− 8)2.
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To estimate the error, we use Taylor’s inequality:

|R2(x)| ≤
M |x− 8|3

3!
,

where M is an upper bound on |f (3)(x)| =
∣∣∣10
27

x−8/3
∣∣∣ for x in the interval of interest.

For x near a = 8, the maximum value of |f (3)(x)| occurs at x = 7, so

|f (3)(x)| ≤ |f (3)(7)| ≤ 10

27
· 7−8/3 < 0.0021.

Finally, the error is bounded by:

|R2(x)| <
M

3!
< 0.0004.

•

12. List of Common Maclaurin Series

1

1− x
=

∞∑
n=0

xn, |x| < 1.

ex =
∞∑
n=0

xn

n!
, |x| < ∞.

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, |x| < ∞.

cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!
, |x| < ∞.

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
, |x| < 1.

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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