Spring 2021 MATH231 Section CDQ Discussion

WF 9-10am

This document can be found here or on my website. I will continue update it until the end of semester.

Contact

- TA for section CDQ: Xinran Yu
- Email: xinran4@illinois.edu. Please included MATH231 in your email subject.
- Office hour: Wed $10-11 \mathrm{am}^{1}$

Zoom

- Please use your cameras and microphones in breakout rooms.
- Interrupt me/using the "Raise Hand" feature on Zoom to ask questions.
- You can call me into your breakout room/return to the main room to ask for help.
- It is also possible for me to join your breakout rooms randomly to check if you have any questions.

Worksheet

- Worksheet can be found on Moodle under Groupwork folder.
- Ask for hints when you get stuck on a problem.

Submission

- Submit on Moodle under Groupwork folder.
- 1 submission per group. Once a file is uploaded, everyone in the same group will be able to see/edit the file. ${ }^{2}$
- Group remains the same until each midterm.
- 1st worksheet of the week is due on Thursday at 8AM CST. ${ }^{3}$
- 2nd worksheet of the week is due on Saturday at 8AM CST.
- Worksheet solutions available at 12:30PM CST on the due date.

Grading

Worksheets are graded with 2,1 or 0 .
2 - the worksheet uploaded is satisfactory
1 - the worksheet uploaded is unsatisfactory and needs improvement. Your TA will comment on what should be improved for next time.

0 - the worksheet was not uploaded

[^0]
Contents

1 Worksheet 1 3
2 Worksheet 2 4
3 Worksheet $3 \quad 5$
4 Worksheet 4 6
5 Worksheet 5 7
6 Worksheet 6 8
7 Worksheet $7 \quad 9$
8 Worksheet 8 9
9 Worksheet 9 10
10 Worksheet 1011
11 Worksheet $11 \quad 12$
12 Worksheet 1213
13 Worksheet 1315
14 Worksheet $14 \quad 16$
15 Worksheet $15 \quad 17$
16 Worksheet $16 \quad 18$
17 Worksheet $17 \quad 19$
18 Worksheet 18 20
19 Worksheet 1921
20 Worksheet 2022
21 Worksheet 2123
22 Worksheet 2224
23 Worksheet $23 \quad 25$
24 Worksheet $24 \quad 25$
25 Worksheet $25 \quad 26$
26 Worksheet 26
27

Worksheet 1

Recall
Theorem 1.1 (Fundamental Theorem of Calculus). Ref p. 26
Part 1 If $f(x)$ is continuous over an interval $[a, b]$, and the function $F(x)$ is defined by

$$
F(x)=\int_{a}^{x} f(t) \mathrm{d} t, \quad x \in[a, b]
$$

then $F^{\prime}(x)=f(x)$ over $[a, b]$.
Part 2 If $f(x)$ is continuous over an interval $[a, b]$, and $F(x)$ is any antiderivative of $f(x)$ i.e. $F^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(a)-F(b) .
$$

Example 1.2. Let

$$
g(x)=\int_{a}^{b(x)} f(t) \mathrm{d} t
$$

Apply chain rule and FTC

$$
g^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{c}^{b(x)} f(t) \mathrm{d} t=b^{\prime}(x) \cdot f(b(x))
$$

Worksheet 2

Recall

- Substitution rule/Change of variable: let $u=g(x)$, then

$$
\begin{equation*}
\int f(g(x)) \cdot g^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u \tag{Q1-3}
\end{equation*}
$$

- Compute area between curves.
- Draw the graph.
- Find intersection points by solving $f(x)=g(x)$, say they are $x=a$ and $x=b$.
- Area $=\int_{a}^{b} f(x)-g(x) \mathrm{d} x$.

Worksheet 3

Volume of a solid of revolution: Slices of volume are circles. Ref

$$
\mathrm{Vol}=\int_{a}^{b} \pi f(x)^{2} \mathrm{~d} x
$$

Q3. Slices are squares/triangles.

$$
\mathrm{Vol}=\int_{a}^{b} \text { Area of slices } \mathrm{d} x
$$

E.g.

$$
\mathrm{Vol}=\int_{a}^{b} f(x)^{2} \mathrm{~d} x
$$

Worksheet 4

Volume by cylindrical shells:

$$
\mathrm{Vol}=\int_{a}^{b} 2 \pi r \cdot f(x) \mathrm{d} x
$$

Rotation about y-axis: $r=x$.
Rotation about the vertical line $x=a: r=|a-x|$.

Worksheet 5

Recall

- Since $\sin x$ is oscillating between -1 and $1, \lim _{x \rightarrow \infty} \sin x$ does not exists.
- we can use L'Hopital's Rule to compute indeterminate forms " $\frac{0}{0}$ " and " $\frac{\infty}{\infty}$ ".

Theorem 5.1 (L'Hopital's Rule).
Assumptions:

$$
\begin{aligned}
& \boldsymbol{f}(\boldsymbol{x}) \rightarrow \mathbf{0} \quad \text { as } x \rightarrow a, \\
& \boldsymbol{g}(\boldsymbol{x}) \rightarrow \mathbf{0} \\
& \boldsymbol{g}^{\prime}(\boldsymbol{x}) \neq \mathbf{0}
\end{aligned}
$$

Conclusion:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Warning: check the assumptions before applying L'Hopital's Rule.

Worksheet 6

Integration by parts

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} \Longrightarrow \int \boldsymbol{u} \mathbf{d} \boldsymbol{v}=\boldsymbol{u} \boldsymbol{v}-\int \boldsymbol{v} \mathbf{d} \boldsymbol{u}
$$

Choose u based on which of these comes first, (search "integration by parts what to choose as u "):
(1) Logarithmic functions: $\ln x$
(2) Inverse trigonometric functions: $\arcsin x$
(3) Algebraic functions: x
(4) Trigonometric functions: $\sin x$
(5) Exponential functions: e^{x}

Worksheet 7

Worksheet 8

Recall: $1+\tan ^{2} x=\sec ^{2} x$.

Worksheet 9

Substitution rule/Change of variable: let $u=g(x)$, then

$$
\int f(g(x)) \cdot g^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u
$$

Integration by parts:

$$
\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u
$$

Worksheet 10

Partial fractions decomposition: Find A, B such that

$$
\frac{1}{(x-a)(x-b)}=\frac{A}{x-a}-\frac{B}{x-b} .
$$

The following table is from this website

Factor in denominator	Term in partial fraction decomposition
$a x+b$	$\frac{A}{a x+b}$
$(a x+b)^{k}$	$\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{k}}{(a x+b)^{k}}, k=1,2,3, \ldots$
$a x^{2}+b x+c$	$\frac{A x+B}{a x^{2}+b x+c}$
$\left(a x^{2}+b x+c\right)^{k}$	$\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{k} x+B_{k}}{\left(a x^{2}+b x+c\right)^{k}}, k=1,2,3, \ldots$

Typo in solution

WS10 Q3.

$$
\frac{A x+B}{x^{2}+4}+\frac{C x+D}{\left(x^{2}+4\right)^{2}}+\frac{E}{x-1}+\frac{F}{(x-1)^{2}}+\frac{G}{(x-1)^{3}}
$$

Worksheet 11

Improper integrals: There are two types of improper integrals $\int_{a}^{b} f(x) \mathrm{d} x$:
(1) a or b (or both) infinite, e.g $\int_{1}^{\infty} \frac{1}{x} \mathrm{~d} x$.
(2) The function $f(x)$ blows up in the interval $[a, b]$, e.g $\int_{0}^{1} \ln x \mathrm{~d} x$.

To compute improper integrals, e.g.:

$$
\int_{1}^{\infty} \frac{1}{x} \mathrm{~d} x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} \mathrm{~d} x
$$

Worksheet 12

Simpson's rule: Let x_{i} 's be equally spaced points,

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Coefficient is 4 for odd $i, i \neq 0, n$; coefficient is 2 for even $i, i \neq 0, n$.

If you want to use the formula $\int \frac{1}{x^{2}+a^{2}} \mathrm{~d} x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C$, for complex a. Recall how we obtain this formula. We do trig substitution, $x=a \tan \theta$, and use the identity $1+\tan ^{2} \theta=$ $\sec ^{2} \theta$. This identity is still valid for complex θ. So with $x=i \tan \theta, \theta=\arctan (-i x)$,

$$
\begin{aligned}
I=\int \frac{1}{x^{2}-1} \mathrm{~d} x & =\int \frac{1}{x^{2}+i^{2}} \mathrm{~d} x \\
& =\int \frac{1}{i^{2} \tan ^{2} \theta+i^{2}} i \sec ^{2} \theta \mathrm{~d} \theta
\end{aligned}
$$

(Here we need the derivative of $\tan \theta$, but you can check this is $\sec ^{2} \theta$ in the complex case)

$$
=-i \int \frac{1}{\sec ^{2} \theta} \sec ^{2} \theta \mathrm{~d} \theta=-i \theta+C=-i \arctan (-i x)+C .
$$

The above checked our formula is valid for complex a. Hence, we can plug in the value of arctan

$$
\arctan t=\frac{1}{i} \ln \sqrt{\frac{1+i t}{1-i t}}=\frac{i}{2}[\ln (1-i t)-\ln (1+i t)]
$$

So

$$
\begin{gathered}
\arctan (-i x)=\frac{1}{i} \ln \sqrt{\frac{1+x}{1-x}}=\frac{i}{2}[\ln (1-x)-\ln (1+x)] . \\
I=-i \cdot \frac{i}{2}[\ln (1-x)-\ln (1+x)]+C=\frac{1}{2}[\ln (1-x)-\ln (1+x)]+D .
\end{gathered}
$$

Note that D should be a real constant as I is real.

Worksheet 13

Let $\mathrm{d} s$ be the arclength differential.
Arc length:

$$
L=\int \mathrm{d} s=\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x
$$

Surface area:

$$
A=\int 2 \pi x \mathrm{~d} s=\int 2 \pi x \cdot \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x
$$

Worksheet 14

$$
\text { Force }=\int \rho g \cdot \operatorname{depth}(y) \cdot \operatorname{width}(y) \mathrm{d} y
$$

Worksheet 15

Integral test: If $f(x)$ is continuous, positive and decreasing on $[N, \infty)$. Then

$$
\begin{aligned}
\int_{N}^{\infty} f(x) \mathrm{d} x \text { converges } & \Longrightarrow \sum_{n=N}^{\infty} f(n) \text { converges; } \\
\int_{N}^{\infty} f(x) \mathrm{d} x \text { diverges } & \Longrightarrow \sum_{n=N}^{\infty} f(n) \text { diverges. }
\end{aligned}
$$

Warning: check the assumptions before applying integral test.

Worksheet 16

Geometric series:

$$
\sum_{n=0}^{\infty} r^{n}=1+r+r^{2}+r^{3} \cdots= \begin{cases}\frac{1}{1-r} & \text { if }|r|<1 \\ \infty & \text { if }|r| \geq 1\end{cases}
$$

Integral test: If $f(x)$ is continuous, positive and decreasing on $[N, \infty)$. Then

$$
\begin{aligned}
\int_{N}^{\infty} f(x) \mathrm{d} x \text { converges } & \Longrightarrow \sum_{n=N}^{\infty} f(n) \text { converges; } \\
\int_{N}^{\infty} f(x) \mathrm{d} x \text { diverges } & \Longrightarrow \sum_{n=N}^{\infty} f(n) \text { diverges. }
\end{aligned}
$$

Error estimate: Assume $\sum_{n=1}^{\infty} a_{n}$ converges

$$
S=\overbrace{a_{1}+a_{2}+\cdots+a_{n}}^{\text {partial sum } S_{n}}+\underbrace{a_{n+1}+a_{n+2}+\cdots}_{\text {reminders } R_{n}} .
$$

Note that the first term in R_{n} is a_{n+1},

$$
\int_{n+1}^{\infty} f(x) \mathrm{d} x<R_{n}<\int_{n}^{\infty} f(x) \mathrm{d} x
$$

Worksheet 17

Alternating series test: Suppose that we have a series $\sum a_{n}$ and either $a_{n}=(-1)^{n} b_{n}$ or $a_{n}=(-1)^{n+1} b_{n}$ where $b_{n} \geq 0$ for all n. If

- $\lim _{n \rightarrow \infty} b_{n}=0 ;$
- $\left\{b_{n}\right\}$ is a decreasing sequence the series, then $\sum_{n} a_{n}$ is convergent.

Ratio test: Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$

- $L<1, \sum_{n} a_{n}$ convergent;
- $L>1, \sum_{n} a_{n}$ divergent;
- $L=1$ no conclusion.

Worksheet 18

Comparison test: If $a_{n}, b_{n}>0$ and $a_{n} \leq b_{n}$ for all large n then

- $\sum b_{n}$ converges, then a_{n} also converges;
- $\sum a_{n}$ diverges, then b_{n} also diverges.

Limit comparison test: Given $\sum a_{n}, \sum b_{n}$, with $a_{n}, b_{n}>0$ If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=C$ for some $C \neq 0, C \neq \infty$. Then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.

Worksheet 19

Ratio test: Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$

- $L<1, \sum_{n} a_{n}$ converges absolutely;
- $L>1, \sum_{n} a_{n}$ diverges;
- $L=1$ no conclusion.

Root test: Let $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$

- $L<1, \sum_{n} a_{n}$ converges absolutely;
- $L>1, \sum_{n} a_{n}$ diverges;
- $L=1$ no conclusion.

Worksheet 20

Radius of convergence: For a power series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

where a and c_{n} are numbers. The radius of convergence is a number $R \in[0, \infty]$ s.t.

- the series converges if $|x-a|<R$;
- the series diverges if $|x-a|>R$.

To find R, compute $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$. Apply ratio test and check the boundary case.

Recall
Ratio test: Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$

- $L<1, \sum_{n} a_{n}$ converges absolutely;
- $L>1, \sum_{n} a_{n}$ diverges;
- $L=1$ no conclusion.

Worksheet 21

Power series expansion: Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, for $|x|<R$ then we can differentiate and integrate $f(x)$:

- $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1} ;$
- $\int f(t) \mathrm{d} t=\sum_{n=0}^{\infty} a_{n} \frac{x^{n+1}}{n+1}+C$.

Worksheet 22

Taylor series:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

Maclaurin series: taking Taylor Series about $x=0$

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
\end{aligned}
$$

Examples to remember:

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}, \text { for }|x|<1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Worksheet 23
Worksheet 24

Worksheet 25

Match the graph of the parametric equations with the parametric curves:

- Check the range of x and y
- Find specific points which lies on the graph
- Other property: oscillation, symmetry...

(b)

(d)

II

IV

Worksheet 26

Let $\mathrm{d} s$ be the arclength differential.
Arc length:

$$
L=\int \mathrm{d} s=\int \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t
$$

Surface area:

$$
A=\int 2 \pi x \mathrm{~d} s=\int 2 \pi x(t) \cdot \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t
$$

[^0]: ${ }^{1}$ Office hour is run for all students in MATH231
 ${ }^{2}$ Groups are assigned randomly by Moodle
 ${ }^{3}$ Central Standard Time

