
Spring 2021 MATH231 Section CDQ Discussion

WF 9-10am

This document can be found here or on my website. I will continue update it until the end
of semester.

Contact

• TA for section CDQ: Xinran Yu

• Email: xinran4@illinois.edu. Please included MATH231 in your email subject.

• Office hour: Wed 10-11am1

Zoom

• Please use your cameras and microphones in breakout rooms.

• Interrupt me/using the “Raise Hand” feature on Zoom to ask questions.

• You can call me into your breakout room/return to the main room to ask for help.

• It is also possible for me to join your breakout rooms randomly to check if you have
any questions.

Worksheet

• Worksheet can be found on Moodle under Groupwork folder.

• Ask for hints when you get stuck on a problem.

Submission

• Submit on Moodle under Groupwork folder.

• 1 submission per group. Once a file is uploaded, everyone in the same group will
be able to see/edit the file. 2

• Group remains the same until each midterm.

• 1st worksheet of the week is due on Thursday at 8AM CST. 3

• 2nd worksheet of the week is due on Saturday at 8AM CST.

• Worksheet solutions available at 12:30PM CST on the due date.

Grading

Worksheets are graded with 2, 1 or 0.

2 - the worksheet uploaded is satisfactory

1 - the worksheet uploaded is unsatisfactory and needs improvement. Your TA will
comment on what should be improved for next time.

0 - the worksheet was not uploaded

1Office hour is run for all students in MATH231
2Groups are assigned randomly by Moodle
3Central Standard Time
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https://xinrany.github.io/home/documents/teaching/MATH231_Spring_2021_Discussion.pdf
https://xinrany.github.io/home/teaching/math231-spring2021.html
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Worksheet 1

Recall

Theorem 1.1 (Fundamental Theorem of Calculus). Ref p.26

Part 1 If f(x) is continuous over an interval [a, b], and the function F (x) is defined by

F (x) =

∫ x

a

f(t) dt, x ∈ [a, b],

then F ′(x) = f(x) over [a, b].

Part 2 If f(x) is continuous over an interval [a, b], and F (x) is any antiderivative of f(x)
i.e. F ′(x) = f(x), then ∫ b

a

f(x) dx = F (a)− F (b).

Example 1.2. Let

g(x) =

∫ b(x)

a

f(t) dt.

Apply chain rule and FTC

g′(x) =
d

dx

∫ b(x)

c

f(t) dt = b′(x) · f(b(x)).
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http://www.math.toronto.edu/beatriz/files/MAT136_Lecture_Notes.pdf


Worksheet 2

Recall

• Substitution rule/Change of variable: let u = g(x), then∫
f(g(x)) · g′(x) dx =

∫
f(u) du. (Q1-3)

• Compute area between curves. (Q4-7)

– Draw the graph.

– Find intersection points by solving f(x) = g(x), say they are x = a and x = b.

– Area =
∫ b

a
f(x)− g(x) dx.
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Worksheet 3

Volume of a solid of revolution: Slices of volume are circles. Ref

Vol =

∫ b

a

πf(x)2 dx.

Q3. Slices are squares/triangles.

Vol =

∫ b

a

Area of slices dx.

E.g.

Vol =

∫ b

a

f(x)2 dx.
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http://cochranmath.pbworks.com/w/page/26216874/Volume%20of%20a%20solid%20of%20revolution%20by%20plane%20slicing


Worksheet 4

Volume by cylindrical shells:

Vol =

∫ b

a

2πr · f(x) dx.

Rotation about y-axis: r = x.
Rotation about the vertical line x = a: r = |a− x|.

6



Worksheet 5

Recall

• Since sinx is oscillating between -1 and 1, lim
x→∞

sinx does not exists.

• we can use L’Hopital’s Rule to compute indeterminate forms “ 0
0” and “∞∞”.

Theorem 5.1 (L’Hopital’s Rule).
Assumptions:

f(x)→ 0 as x→ a,

g(x)→ 0,

g′(x) 6= 0.

Conclusion:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Warning: check the assumptions before applying L’Hopital’s Rule.
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Worksheet 6

Integration by parts:

(uv)′ = u′v + uv′ =⇒
∫

u dv = uv −
∫

v du.

Choose u based on which of these comes first, (search “integration by parts what to choose
as u”):

(1) Logarithmic functions: lnx

(2) Inverse trigonometric functions: arcsinx

(3) Algebraic functions: x

(4) Trigonometric functions: sinx

(5) Exponential functions: ex
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http://www.google.com/search?q=integration+by+parts+what+to+choose+as+u
http://www.google.com/search?q=integration+by+parts+what+to+choose+as+u


Worksheet 7

Worksheet 8

Recall: 1 + tan2 x = sec2 x.
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Worksheet 9

Substitution rule/Change of variable: let u = g(x), then∫
f(g(x)) · g′(x) dx =

∫
f(u) du.

Integration by parts: ∫
udv = uv −

∫
v du.
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Worksheet 10

Partial fractions decomposition: Find A,B such that

1

(x− a)(x− b)
=

A

x− a
− B

x− b
.

The following table is from this website

Typo in solution

WS10 Q3.
Ax+B

x2 + 4
+

Cx+D

(x2 + 4)2
+

E

x− 1
+

F

(x− 1)2
+

G

(x− 1)3
.
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https://tutorial.math.lamar.edu/classes/calcii/partialfractions.aspx


Worksheet 11

Improper integrals: There are two types of improper integrals

∫ b

a

f(x) dx:

(1) a or b (or both) infinite, e.g

∫ ∞
1

1

x
dx.

(2) The function f(x) blows up in the interval [a, b], e.g

∫ 1

0

lnxdx.

To compute improper integrals, e.g.:∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx.
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Worksheet 12

Simpson’s rule: Let xi’s be equally spaced points,∫ b

a

f(x) dx ≈ ∆x

3
(f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn)).

Coefficient is 4 for odd i, i 6= 0, n; coefficient is 2 for even i, i 6= 0, n.
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If you want to use the formula

∫
1

x2 + a2
dx =

1

a
arctan(

x

a
) + C, for complex a. Recall how

we obtain this formula. We do trig substitution, x = a tan θ, and use the identity 1+tan2 θ =
sec2 θ. This identity is still valid for complex θ. So with x = i tan θ, θ = arctan(−ix),

I =

∫
1

x2 − 1
dx =

∫
1

x2 + i2
dx

=

∫
1

i2 tan2 θ + i2
i sec2 θ dθ

(Here we need the derivative of tan θ, but you can check this is sec2 θ in the complex case)

= −i
∫

1

sec2 θ
sec2 θ dθ = −iθ + C = −i arctan(−ix) + C.

The above checked our formula is valid for complex a. Hence, we can plug in the value of
arctan

arctan t =
1

i
ln

√
1 + it

1− it
=
i

2
[ln(1− it)− ln(1 + it)] .

So

arctan(−ix) =
1

i
ln

√
1 + x

1− x
=
i

2
[ln(1− x)− ln(1 + x)] .

I = −i · i
2

[ln(1− x)− ln(1 + x)] + C =
1

2
[ln(1− x)− ln(1 + x)] +D.

Note that D should be a real constant as I is real.
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Worksheet 13

Let ds be the arclength differential.

Arc length:

L =

∫
ds =

∫ √
1 +

(
dy

dx

)2

dx.

Surface area:

A =

∫
2πxds =

∫
2πx ·

√
1 +

(
dy

dx

)2

dx.
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Worksheet 14

Force =

∫
ρg · depth(y) · width(y) dy.
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Worksheet 15

Integral test: If f(x) is continuous, positive and decreasing on [N,∞). Then∫ ∞
N

f(x) dx converges =⇒
∞∑

n=N

f(n) converges;

∫ ∞
N

f(x) dx diverges =⇒
∞∑

n=N

f(n) diverges.

Warning: check the assumptions before applying integral test.
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Worksheet 16

Geometric series:

∞∑
n=0

rn = 1 + r + r2 + r3 · · · =


1

1− r
if |r| < 1

∞ if |r| ≥ 1

Integral test: If f(x) is continuous, positive and decreasing on [N,∞). Then∫ ∞
N

f(x) dx converges =⇒
∞∑

n=N

f(n) converges;

∫ ∞
N

f(x) dx diverges =⇒
∞∑

n=N

f(n) diverges.

Error estimate: Assume
∑∞

n=1 an converges

S =

partial sum Sn︷ ︸︸ ︷
a1 + a2 + · · ·+ an + an+1 + an+2 + · · ·︸ ︷︷ ︸

reminders Rn

.

Note that the first term in Rn is an+1,∫ ∞
n+1

f(x) dx < Rn <

∫ ∞
n

f(x) dx.
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Worksheet 17

Alternating series test: Suppose that we have a series
∑
an and either an = (−1)nbn or

an = (−1)n+1bn where bn ≥ 0 for all n. If

• lim
n→∞

bn = 0;

• {bn} is a decreasing sequence the series,

then
∑

n an is convergent.

Ratio test: Let L = lim
n→∞

∣∣an+1

an

∣∣
• L < 1,

∑
n an convergent;

• L > 1,
∑

n an divergent;

• L = 1 no conclusion.
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Worksheet 18

Comparison test: If an, bn > 0 and an ≤ bn for all large n then

•
∑
bn converges, then an also converges;

•
∑
an diverges, then bn also diverges.

Limit comparison test: Given
∑
an,

∑
bn, with an, bn > 0 If lim

n→∞
an

bn
= C for some

C 6= 0, C 6=∞. Then
∑
an and

∑
bn either both converge or both diverge.
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Worksheet 19

Ratio test: Let L = lim
n→∞

∣∣an+1

an

∣∣
• L < 1,

∑
n an converges absolutely;

• L > 1,
∑

n an diverges;

• L = 1 no conclusion.

Root test: Let L = lim
n→∞

n
√
|an|

• L < 1,
∑

n an converges absolutely;

• L > 1,
∑

n an diverges;

• L = 1 no conclusion.
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Worksheet 20

Radius of convergence: For a power series of the form

∞∑
n=0

cn(x− a)n,

where a and cn are numbers. The radius of convergence is a number R ∈ [0,∞] s.t.

• the series converges if |x− a| < R;

• the series diverges if |x− a| > R.

To find R, compute L = lim
n→∞

∣∣∣an+1

an

∣∣∣. Apply ratio test and check the boundary case.

Recall

Ratio test: Let L = lim
n→∞

∣∣an+1

an

∣∣
• L < 1,

∑
n an converges absolutely;

• L > 1,
∑

n an diverges;

• L = 1 no conclusion.
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Worksheet 21

Power series expansion: Let f(x) =

∞∑
n=0

anx
n, for |x| < R then we can differentiate and

integrate f(x):

• f ′(x) =

∞∑
n=1

nanx
n−1;

•
∫
f(t) dt =

∞∑
n=0

an
xn+1

n+ 1
+ C.
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Worksheet 22

Taylor series:

f (x) =

∞∑
n=0

f (n) (a)

n!
(x− a)

n

= f (a) + f ′ (a) (x− a) +
f ′′ (a)

2!
(x− a)

2
+
f ′′′ (a)

3!
(x− a)

3
+ · · ·

Maclaurin series: taking Taylor Series about x = 0

f (x) =

∞∑
n=0

f (n) (0)

n!
xn

= f (0) + f ′ (0)x+
f ′′ (0)

2!
x2 +

f ′′′ (0)

3!
x3 + · · ·

Examples to remember:

1

1− x
=

∞∑
n=0

xn, for |x| < 1

ex =

∞∑
n=0

xn

n!

cosx =

∞∑
n=0

(−1)
n
x2n

(2n)!

sinx =

∞∑
n=0

(−1)
n
x2n+1

(2n+ 1)!
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Worksheet 23

Worksheet 24
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Worksheet 25

Match the graph of the parametric equations with the parametric curves:

• Check the range of x and y

• Find specific points which lies on the graph

• Other property: oscillation, symmetry...
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Worksheet 26

Let ds be the arclength differential.

Arc length:

L =

∫
ds =

∫ √
(x′(t))2 + (y′(t))2 dt.

Surface area:

A =

∫
2πxds =

∫
2πx(t) ·

√
(x′(t))2 + (y′(t))2 dt.
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