Review Cal 1. (Limits Derivatives Integrals)
Limit intuitively

Calculating limits.
Limit Caws.
1 $\lim _{x \rightarrow c} f(x) \pm g(x)=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$
$2 \lim _{x \rightarrow c} f(x) g(x)=\left(\lim _{x \rightarrow c} f(x)\right) \lim _{x \rightarrow c} g(x)$
$3 \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$ when $\lim _{x \rightarrow c} g(x) \neq 0$
why?
Example $\lim _{x \rightarrow 0} \frac{(x+3)^{2}-9^{\leftarrow}}{x}$ cannot apply 3 directly Soln 1 . direct computation

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}+6 x+9-9}{x} & =\lim _{x \rightarrow 0} \frac{x^{2}+6 x}{x} \\
& =\lim _{x \rightarrow 0} x+6 \\
& =\lim _{x \rightarrow 0} x+\lim _{x \rightarrow 0} 6=6
\end{aligned}
$$

Soln 2. L'Hopital's rule

$$
" \frac{0}{0} " \quad \frac{\infty}{\infty} "
$$

Need to check $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ or ∞

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g(x)} \\
& =\lim _{x \rightarrow 0} \frac{2(x+3)}{1}=\lim _{x \rightarrow 0} 2 x+6=6
\end{aligned}
$$

Counter example to L'Hopital's rule

$$
\begin{array}{r}
I=\lim _{x \rightarrow \infty} \frac{x}{x+\sin x} \\
-1 \leqslant \sin x \leqslant 1
\end{array}
$$

$$
\begin{array}{cc}
\Rightarrow-\frac{1}{x} \leqslant \frac{\sin x}{x} \leqslant \frac{1}{x} \\
\downarrow & \downarrow \\
0 & 0
\end{array}
$$

Try to "apply L'Hoptial"

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{1}{1+\cos x}
$$

limit does not exist

Derivatives

$$
f^{\prime}(x) \quad \frac{d}{d x} f(x)
$$

def.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h-f(x)}{h}<\Delta y
$$

$$
\Delta x \rightarrow 0
$$

Derivative Laws

$$
\begin{aligned}
& (f \pm g)^{\prime}=f^{\prime} \pm g^{\prime} \\
& (f g)^{\prime}=f^{\prime} g+f g^{\prime} \\
& \left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
\end{aligned}
$$

Chain rule

$$
\begin{aligned}
& (f \circ g)^{\prime} \\
& \frac{d}{d x} f(g(x))=\frac{d}{d x} f(g(x)) \cdot \frac{d}{d x} g(x)
\end{aligned}
$$

Derivatives of the following functions
$\begin{array}{llll}f & x^{n} & e^{x} \sin x \cos x & \ln x \\ f^{\prime} & n x^{n-1} & e^{x} \cos x l-\sin x & \frac{1}{x}\end{array}$

$$
\begin{aligned}
\tan x!=\left(\frac{\sin x}{\cos x}\right)^{\prime} & =\frac{\cos x \cdot \cos x-(-\sin x \cdot \sin x)}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

Mean value theorem

cont. $[a, b]$
there exists $c \in[a . b]$

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Integration
$\int d x$ " $=$ " reversing $\frac{d}{d x}$.
limit of summation over small intervals.

$$
\int \lim _{\Delta x_{i} \rightarrow 0} \sum_{i=0}^{n} f\left(x_{i}\right) \cdot \Delta x_{i}
$$

Integration Caws.

$$
\begin{aligned}
& \int^{b} f+g d x=\int f d x+\int g d x \\
& \int_{c}^{\operatorname{lin}} d x=c \int f d x \\
& \int_{a}^{b}+\int_{b}^{c}=\int_{a}^{c}
\end{aligned}
$$

Fundamental theorem of calculus. (FTC)

1. Given $F(x)=\int_{a}^{x} f(x) d x$
f cont. over $[a, b]$
$x \in[a, b]$
Then $F^{\prime}=f$
$\rightarrow 2$. $\int_{a}^{b} f(x) d x=F(b)-F(a)$ if f cont. over $[a, b]$

$$
\rho F \text { antiderivative of } f
$$

! This allows us to compute integrals.

$$
\left.\int_{0}^{1} x d x=\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2}(1)^{2}-\frac{1}{2} 0^{2}
$$

How to use Part 1 ?
Example $\quad \frac{d}{d x} \int_{a}^{\sin x} t^{3} d t$
Take $u(x)=\sin x \quad F(u)=\int_{a}^{u} t^{3} d t$

$$
\begin{aligned}
\frac{d}{d x} F(u(x)) & =\frac{d F}{d u} \cdot \frac{d u}{d x} \\
& =u^{3}(x) \cdot \cos x \\
& =\sin ^{3} x \cdot \cos x
\end{aligned}
$$

Application: Computing area

Review Calc I (Substitution rule)

$$
\int f(u(x)) u^{\prime}(x) d x=\int f(u) d u
$$

Recall chain rule

$$
(F \circ u)^{\prime}(x)=F^{\prime}(u(x)) \cdot u^{\prime}(x)
$$

Let f be the antiderivative of F.

$$
\Rightarrow(F \circ u)^{\prime}(x)=f(u(x)) \cdot u^{\prime}(x)
$$

Integrating w.r.t. x.

$$
\begin{aligned}
& \int_{a}^{b}(F \circ u)^{\prime}(x) d x=\int_{a}^{b} f(u(x)) \cdot u^{\prime}(x) d x \\
= & (F \circ u)(b)-(F \circ u)(a) \\
= & F(u(b))-F(u(a)) \\
F T C & \int_{u(a)}^{u(b)} f(u) d u
\end{aligned}
$$

