Ch 11. Infinite sequence and series
Def. An sequence is an infinite list of numbers written in a definite order.
Notation: $\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots\right\},\left\{a_{n}\right\}$ or $\left\{a_{n}\right\}_{n=1}^{\infty}$
Examples $\{1,2,3,4, \cdots\}$
$\{7,1,8,2,8, \cdots\}$
Some sequences can be defined by giving a formula
for the n-th term a_{n} for the n-th term a_{n}
Examples 1. $a_{n}=\left(\frac{1}{2}\right)^{n} \quad\left\{a_{n}\right\}=\left\{\frac{1}{2}, \frac{1}{4}, \cdots\right\}$
2. $a_{n}=(-1)^{n} \quad\left\{a_{n}\right\}=\{-1,1,-1,1, \cdots\}$
3. $a_{n}=\frac{n}{n+1} \quad\left\{a_{n}\right\}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots\right\}$

Some sequences may not have a simple / explicit defining equation
Examples 1. $a_{n}=$ the digit in the n-th decimal place of π
2. The Fibonacci sequence

$$
\begin{aligned}
& a_{1}=1, a_{2}=1, a_{n}=a_{n-1}+a_{n-2} \\
& \{1,1,2,3,5,8,13,21, \cdots\}
\end{aligned}
$$

A sequence "is" a function f that only takes values on natural numbers. So we will study properties such as graph and convergency.
Example

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

$$
L<\infty
$$

Def. A sequence has limit L if for any ε there is an N s.t. if $n>N$ then

$$
\left|a_{n}-L\right|<\varepsilon
$$

We say $\left\{a_{n}\right\}$ comerges to L

Intuition

Def. $\lim _{n \rightarrow \infty} a_{n}=\infty$ means that for every positive number M there is an integer N st. if $n>N$ then $a_{n}>M$.

Examples

$$
\text { 1. } \lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1
$$

2. $\lim _{n \rightarrow \infty} \frac{1}{n^{r}}= \begin{cases}0 & \text { if } r>0 \\ \infty & \text { if } r<0\end{cases}$
3. $\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1 \\ \infty & \text { of } r>1 \\ D N E & \text { if } r<1\end{cases}$

Limit law for sequences
if $\left\{a_{n}\right\}$. $\left\{b_{n}\right\}$ are comergent sequences then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} c a_{n} & =c \lim _{n \rightarrow \infty} a_{n} \quad c \text { const. } \\
\lim _{n \rightarrow \infty} a_{n} b_{n} & =\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \\
\lim _{n \rightarrow \infty} a_{n}^{p} & =\left(\lim _{n \rightarrow \infty} a_{n}\right)^{p} \quad p>0 \quad a_{n}>0
\end{aligned}
$$

Squeeze Theorem

The If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$
If f is continuous

$$
\lim _{n \rightarrow \infty} a_{n}=L \Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Example 1.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{n}\right) & =\sin \left(\lim _{n \rightarrow \infty} \frac{\pi}{n}\right) \\
& =\sin 0=0
\end{aligned}
$$

Example 2. $\lim _{n \rightarrow \infty} \frac{\ln (n+2)}{\ln (1+4 n)}$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (x+2)}{\ln (1+4 x)} & \stackrel{\text { L'Hopital }}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x+2}}{\frac{1}{1+4 x} \cdot 4} \\
& =\lim _{x \rightarrow \infty} \frac{4 x+1}{4(x+2)}=1
\end{aligned}
$$

Example 3.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} & =\lim _{n \rightarrow \infty} e^{\ln \left(1+\frac{1}{n}\right)^{n}} \\
& =e^{\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right)} \\
& =e \\
\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{1}{1+\frac{1}{n}} \cdot-\frac{1}{n^{2}}}{-\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1
\end{aligned}
$$

Last time: sequence
This time: series
Def. We call $\sum_{n=1}^{\infty} a_{n}$ or $\sum a_{n}$ a series and

$$
s_{N}=\sum_{n=1}^{N} a_{n}=a_{1}+a_{2}+\cdots+a_{N} \text { the partial sums. }
$$

Note that $\left\{S_{N}\right\}$ is itself a sequence. So it make sense to talk about if $\left\{S_{N}\right\}$ converges or not.
Def. The series $\sum a_{n}$ is called convergent if its partial sum is convergent. Otherwise $\sum a_{n}$ is called divergent.
Example 1. (geometric series)
Consider $a_{n}=r^{n} r$: common ratio.

$$
\begin{aligned}
a_{0}=r^{0}=1 & S_{0}=a_{0}=1 \\
a_{1}=r^{\prime}=r & S_{1}=a_{0}+a_{1}=1+r \\
a_{2}=r^{2}=r^{2} & S_{2}=a_{0}+a_{1}+a_{2}=1+r+r^{2} \\
& \vdots \\
& \\
& S_{N}=\underbrace{1+r+r^{2}+\cdots+r^{N}}
\end{aligned}
$$

we are interested in this sum.

$$
\begin{aligned}
& \text { Let } R_{N}=\sum_{n=0}^{N} r^{n}=1+r+r^{2}+\cdots+r^{N} \\
& r R N=\quad r+r^{2}+\cdots+r^{N}+r^{N+1} \\
& \Rightarrow R_{N}-r R_{N}=1-r^{N+1} \\
& \Rightarrow R_{N}=\frac{1-r^{N+1}}{1-r} \\
& \sum_{n=0}^{\infty} r^{n}=\lim _{N \rightarrow \infty} R_{N} \\
& \nabla_{0} n=0 \quad\left\{\begin{array}{ll}
\frac{1}{1-r} & \text { if }-1<r<1 \\
\infty & \text { if } r \geqslant 1 \\
D N E & \text { if } r \leqslant-1
\end{array}<\right.\text { cons. } \\
& \sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r} \text { because } \sum_{n=0}^{\infty} r^{n}=1+\sum_{n=1}^{\infty} r_{n}
\end{aligned}
$$

Example 2. Compute $\sum_{n=1}^{\infty} 2^{2 n} 3^{1-n}$ using the above

$$
\begin{aligned}
\sum_{n=1}^{\infty} 2^{2 n} 6^{1-n} & =\sum_{n=1}^{\infty}\left(2^{2}\right)^{n} \cdot 6 \cdot 6^{-n} \quad \begin{array}{l}
\text { note that } n \\
\text { start from } 1
\end{array} \\
& =6 \cdot \sum_{n=1}^{\infty}\left(\frac{4}{6}\right)^{n}=6 \cdot \frac{\frac{2}{3}}{11-\frac{2}{3}} \\
& \frac{2}{3} \\
& =6 \cdot 2=12
\end{aligned}
$$

Example 3. (harmonic series)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \\
& S_{2}=1+\frac{1}{2} \\
& S_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4} \\
&=1+\frac{2}{2}
\end{aligned} \quad \begin{aligned}
S_{8} & =1+\frac{1}{2}+\underbrace{\frac{1}{3}+\frac{1}{4}}+\underbrace{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}} \\
& >1+\frac{1}{2}+\underbrace{\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}}_{\frac{1}{4}+\frac{1}{4}} \\
& =1+\frac{3}{2} \\
\vdots & \\
S_{2 n} & =1+\frac{n}{2} \xrightarrow{n \rightarrow \infty} \infty
\end{aligned}
$$

Hence $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges

Example 4. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.
Note that $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$

$$
\begin{aligned}
S_{n} & =\left(1-\frac{1}{12}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1} \longrightarrow 1
\end{aligned}
$$

Theorem $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ converges, c const.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n} \pm b_{n}=\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n} \\
& \sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}
\end{aligned}
$$

Example $5 \sum_{n=1}^{\infty} \frac{3}{a_{n}}+\underbrace{\frac{1}{2^{n}}}_{b_{n}}$
We have $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{1-\frac{1}{2}}-1$

$$
\begin{aligned}
& =2-1=1 \\
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} & =1
\end{aligned}
$$

So the original series converges to

$$
3 \cdot 1+1=4
$$

Tho $\sum_{n=1}^{\infty} a_{n}$ convergent $\Rightarrow \lim _{n \rightarrow \infty} a_{n}=0$
pf. By definition, we know $\lim _{n \rightarrow \infty} S_{n}=L$ for some real number \angle.

$$
\begin{aligned}
\Rightarrow \lim _{n \rightarrow \infty} s_{n-1} & =\lim _{n \rightarrow \infty} s_{n}=L \\
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right) \\
& =\lim _{n \rightarrow \infty} s_{n-1}-\lim _{n \rightarrow \infty} s_{n} \\
& =L-L=0
\end{aligned}
$$

Conoallary (The divergence test)
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then $\sum_{n=1}^{\infty} a_{n}$ diverges

Examples 1. $\sum_{n=1}^{\infty}(-1)^{n}$
2. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$ all diverges
3. $\sum_{n=1}^{\infty} \frac{n}{n+1}$

Last time computing series.
This time integral test \& estimates
We have been computing exact value of a series so far for some special cases. However, in general it is quite difficult. In those cases, we are interested in finding an estimate.
Thu (the integral test)
Suppose $f(x)>=$ is a continuous decreasing function for $x \geqslant 1$ such that $a_{n}=f(n)$. Then $\sum_{n=1}^{\infty} a_{n}$ com. $\Leftrightarrow \int_{1}^{\infty} f(x) d x$ com.

Moreover,

$$
\begin{equation*}
\int_{1}^{\infty} f(x) d x \leqslant \sum_{n=1}^{\infty} a_{n} \leqslant a_{1}+\int_{1}^{\infty} f(x) d x \tag{*}
\end{equation*}
$$

Error $R_{N}=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{N} a_{n}=\sum_{n=N+1}^{\infty} a_{n}$

$$
\int_{N+1}^{\infty} f(x) d x \leqslant R_{N} \leqslant \int_{N}^{\infty} f(x) d x
$$

Example 1. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ cons.
$f(x)=\frac{1}{x^{2}}>0$ for $x \geqslant 1$ cont. and decreasing $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ con.

$$
f^{\prime}(x)=-2 x^{-3}<0
$$

for $x \geqslant 1$
Example 2. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is com. if $p>1$
div if $p \leq 1$

Example 3. $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ com.
$f(x)=\frac{1}{x^{2}+1}>0$ for $x \geqslant 1$, cont. and decreasing

$$
\begin{aligned}
f^{\prime}(x) & =-\left(x^{2}+1\right)^{-2} \cdot 2 x<0 \text { for } x \geqslant 1 \\
\int_{1}^{\infty} \frac{1}{x^{2}+1} d x & \left.=\lim _{t \rightarrow \infty} \arctan x\right]_{1}^{t} \\
& =\lim _{t \rightarrow \infty} \arctan t-\frac{\pi}{4} \\
& =\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}<\infty
\end{aligned}
$$

Last time: integral test.
This time: the comparison test
The idea of the comparison test for sequences is similar to that for integrals.
Thin (the comparison test)
Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms and $a_{n} \geqslant b_{n}$ for $n \geqslant N$.

$$
\begin{aligned}
\sum a_{n} \text { con } & \Rightarrow \sum \sum_{n} \text { con. } \\
\sum b_{n} \text { div } & \Rightarrow d_{n} \text {. }
\end{aligned}
$$

Compare the above with the comparison test in Ch 7.

Example 1. $\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}$

$$
\begin{aligned}
& 2 n^{2}+4 n+3 \geqslant 2 n^{2} \text { for } n \geqslant 1 \\
& \Rightarrow \frac{\frac{5}{2 n^{2}+4 n+3}}{a n} \leqslant \underbrace{\frac{5}{2 n^{2}}}_{6} \\
& \sum_{n=1}^{\infty} \frac{5}{2 n^{2}}=\frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty \Rightarrow \sum_{n=1}^{\infty} a_{n} \text { con } \text {. }
\end{aligned}
$$

Example 2. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
Note that $\ln n>1$ for $n>e$

$$
\begin{aligned}
& \Rightarrow \frac{\frac{\ln n}{n}}{a_{n}}>\frac{1}{n} \quad \text { for } n>e \\
& \sum_{n=3}^{\infty} \frac{1}{n} \operatorname{div} \Rightarrow \sum_{n=3}^{\infty} a_{n} \text { div we can take } N=3
\end{aligned}
$$

The (the limit comparison test)
Suppose $\sum a_{n}, \sum b_{n}$ are series with positive terms and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c \in(0, \infty)$
Then $\sum a_{n}$ com $\Leftrightarrow \sum b_{n}$ com .
Example 3. $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1} \quad$ Take $b_{n}=\frac{1}{2^{n}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 /\left(2^{n}-1\right)}{1 / 2^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}-1} \\
&=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{1}{2^{n}}}=1 \in(0, \infty) \\
& \sum_{n=1}^{\infty} \frac{1}{2^{n}} \text { com } \Rightarrow \sum a_{n} \text { cons }
\end{aligned}
$$

Example 4. $\quad \sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}} \leftarrow \sqrt{n^{5}}=n^{5 / 2}$

$$
\begin{aligned}
& \text { Fake } b_{n}=\frac{2 n^{2}}{n^{5 / 2}}=\frac{2}{\sqrt{n}} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{2}}} \cdot \frac{\sqrt{n}}{2} \\
& =\lim _{n \rightarrow \infty} \frac{2 n^{5 / 2}+3 n^{3 / 2}}{2 \sqrt{5+n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{2+\frac{3}{n}}{2 \sqrt{\frac{5}{n^{5}}+1}}=\frac{2}{2}=1 \\
& \sum_{n=1}^{\infty} \frac{2}{\sqrt{n}} d i v \Rightarrow \sum a_{n} d i v
\end{aligned}
$$

Last time: comparison tests
This time: alternating series.
So far we've studied series with positive terms. In this section we will study series whose terms are alternating $\left(\right.$ e.g. $\left.a_{2 n}>0, a_{2 n+1}<0\right)$.
Examples 1. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
2. $\sum_{n=1}^{\infty}(-1)^{n}=-1+1-1+1-\cdots$

The following theorem tells us how to determine if an alternating series comerges or not.
Thu (Alternating series test)
Given $\sum_{n=0}^{\infty}(-1)^{n} a_{n},{\stackrel{(1)}{a_{n}}>0}^{\text {if }}$
(2) $a_{n+1} \leqslant a_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ converges.

Pf. Consider the even partial sums (which have positive terms because $a_{n+1} \leqslant a_{n}$)

$$
S_{2 n}=S_{2 n-2}+\underbrace{\left(a_{2 n-1}-a_{2 n}\right)}_{\geqslant 0} \geqslant S_{2 n-2} \quad(n \geqslant 1)
$$

$\left\{s_{2 n}\right\}$ is a positive nonincreasing sequence
hence comerges say hence comerges, say

$$
\lim _{n \rightarrow \infty} S_{2 n}=S
$$

Then the partial sum comenges by limit
law

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \delta_{2 n+1} & =\lim _{n \rightarrow \infty} S_{2 n}+a_{2 n+1} \\
& =S+0=S
\end{aligned}
$$

Moreover, from the above prof, we see that if $\lim _{n \rightarrow \infty} a_{n}$ div, the series div. So divergence test still holds
Example 1. (alternating harmonic series)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cos
$$

Check: $a_{n}=\frac{1}{n}>0$

$$
\begin{aligned}
& a_{n+1}=\frac{1}{n+1} \leqslant \frac{1}{n}=a_{n} \\
& \lim _{n \rightarrow \infty} a_{n}=0
\end{aligned}
$$

So the alternating series test tells the series conc.

Example 2. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{n^{3}+1}$ con.
Check. $a_{n}=\frac{n^{2}}{n^{3}+1} \geqslant 0$ for all n.

- $a_{n+1} \leqslant a_{n}$ for $n \geqslant 2$ because the function
$f(x)=\frac{x^{2}}{x^{3}+1}$ is decreasing (not obvious)

$$
f^{\prime}(x)=\frac{x\left(2-x^{3}\right)}{\left(x^{3}+1\right)^{2}}<0 \text { when } x>\sqrt[3]{2}
$$

- $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}+1}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{1+\frac{1}{n^{3}}}=\left.0\right|_{\sqrt[3]{2}}$
Apply the alternating series test for $n \geq 2$.
$\Rightarrow \sum_{n=2}^{\infty}(-1)^{n}$ an cons.

$$
\begin{aligned}
\Rightarrow \sum_{n=0}^{\infty}(-1)^{n} a_{n}= & \underbrace{a_{0}-a_{1}}_{\text {finite }}+\underbrace{\sum_{n=2}^{\infty}(-1)^{n} a_{n}}_{n=2} \\
& <\infty
\end{aligned}
$$

Estimating alternating series.
The (Alternating series estimation ohm)
Given $\sum_{n=0}^{\infty}(-1)^{n} a_{n}, a_{n}>0$ satisfying
$a_{n+1} \leqslant a_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=0$
then $\left|R_{n}\right|=\left|\delta-S_{n}\right| \leqslant a_{n+1}$

Pf. Recall that $S_{2 n}$ is positive and nonincreasing Let $s=\lim _{n \rightarrow \infty} s_{2 n}$. Then s it $S_{2 n}$ for all n. Similarly, $s \not \geqslant s_{2 n+1}$ (odd partial sums)

$$
\Rightarrow\left|S-S_{m}\right|= \begin{cases}S-S_{m} \leqslant S_{m+1}-S_{m} & m \text { odd } \\ -\left(S-S_{m}\right) \leqslant-\left(S_{m+1}-S_{m}\right) & m \text { even } \\ m+1 \text { odd }-S \leqslant-S_{m+1}\end{cases}
$$

$$
\Rightarrow\left|S-S_{m}\right| \leqslant\left|S_{m+1}-S_{m}\right|=a_{m+1}
$$

Last time: alternating series test
This fine: absolute comergence and more tests

Def A series $\sum a_{n}$ is called absolutely comergent if the series of absolute values $\sum\left|a_{n}\right|$ is convergent.

Def A series \sum am is called conditionally con. if it is convergent but not abs. conv.

Note that absolutely com is stronger than comergent. That is, abs. com. \Rightarrow cons.
pf. Observe that $-a_{n} \leqslant\left|a_{n}\right| \leq a_{n}$

$$
\Rightarrow 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|
$$

Apply the comparison test A_{n} Bn.
$\sum B_{n}$ com $\Rightarrow \sum A_{n}$ con.
then $\sum a_{n}=\underbrace{\sum A_{n}}_{<\infty}-\underbrace{\sum\left|a_{n}\right|}_{<\infty}<\infty$. by one of the propentice of series

Example 1. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$ com. $\sum_{n=1}^{\infty} \frac{1}{n}$ not con.
Hence we say $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$ is conditionally conv. but not absolutely comr.

Example 2. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ both con. Hence we say $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{2}}$ is conditionally conv. and also absolutely comr.

Thu (the ratio test)
Given a series $\sum a_{n}$, let

$$
\begin{aligned}
& \angle=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& \text { if } \angle\left\{\begin{array} { l }
{ < 1 } \\
{ > 1 } \\
{ = 1 }
\end{array} \text { then } \left\{\begin{array}{l}
\sum a_{n} \text { abs com } \\
\sum \text { an div } \\
\text { no conclusion }
\end{array}\right.\right.
\end{aligned}
$$

Thu (the root test)
Given a series $\sum a_{n}$, let

$$
\begin{gathered}
\angle=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \\
\text { if } \angle\left\{\begin{array} { l }
{ < 1 } \\
{ > 1 } \\
{ = 1 }
\end{array} \text { then } \left\{\begin{array}{l}
\sum a_{n} \text { abs com } \\
\sum \text { an div } \\
\text { no conclusion }
\end{array}\right.\right.
\end{gathered}
$$

Remark

1. Note that we have absolute com.
2. $L=1$ case examples

$$
\sum_{n=1}^{\infty} \frac{1}{n} \text { div \& } \sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n} \text { conv }
$$

but in both cases L (for the netio test) is given by

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{n+1}}{\frac{1}{n}}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

3. prototype for both tests: geometric series

$$
\left.\begin{array}{l}
L_{1}=\lim _{n \rightarrow \infty}\left|\frac{r^{n+1}}{r^{n}}\right| \\
L_{2}=\lim _{n \rightarrow \infty} \sqrt[n]{|r|^{n}}
\end{array}\right\}=\lim _{n \rightarrow \infty}|r|=|r|
$$

we know $|r|<1$ com.
$|r|>1$ div

Example 1. $\sum_{n=2}^{\infty} \frac{n^{2}}{(2 n-1)!}$ a sign for ratio test

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{2}}{(2(n+1)-1)!}}{\frac{n^{2}}{(2 n-1)!}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+1) \cdot(2 n) \cdot n^{2}}=0<1
\end{aligned}
$$

Hence the series abs. com. by ratio test.
Example 2. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}}{(n+1)^{2}+1}}{\frac{(-1)^{n}}{n^{2}+1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}+2 n+2}=1
\end{aligned}
$$

The ratio test is nat useful.
Instead one can use the alternating series test to conclude this series cons. and use comparison test for abs, com.

$$
A_{n}=\frac{1}{n^{2}+1} \leqslant B_{n}=\frac{1}{n^{2}}
$$

Example 3. $\sum_{n=0}^{\infty}\left(\frac{3 n+1}{4-2 n}\right)^{2 n}$

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left(\frac{3 n+1}{4-2 n}\right)^{2 n}\right|} \\
& =\lim _{n \rightarrow \infty}\left(\frac{3 n+1}{2 n-4}\right)^{2} \\
& =\lim _{n \rightarrow \infty} \frac{9 n^{2}+6 n+1}{4 n^{2}-16 n+16} \\
& =\frac{9}{4}>1
\end{aligned}
$$

The series converges absolutely by root test.

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left(1+\frac{1}{n}\right)^{-n^{2}}\right|} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-n} \\
& =\frac{1}{e}<1
\end{aligned}
$$

The series converges absolutely by root test.

For strategy of choosing com. tests
See "Supplementary Resources" on course webpage

This time: power series
Def A power series centered at a in a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

Here x is a variable, C_{n} 's are coefficients.
Example 1. Take $a=0$, then $\sum_{n} x^{n}$ is

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots
$$

a polynomial with infinitely many terms.
Moreover if $c_{n}=1$ for all n, then

$$
f(x)=1+x+x^{2}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

is a geometric series, we know it com when $|x|<1$.

The above example shows that a power series may oomerge for some values of x and diverges for other values of x. We can use convergency tests to determine that.

Example 2. $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n}$
Ratio test:

$$
\text { test: } \begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-3)^{n+1}}{n+1}}{\frac{(x-3)^{n}}{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x-3|}{1+\frac{1}{n}}=|x-3|
\end{aligned}
$$

com when $|x-3|<1 \Leftrightarrow 2<x<4$ div $>1 \quad x<2$ or $x>4$

Boundary cases:

$$
\begin{array}{ll}
x=2 & \sum a_{n}=\sum \frac{(-1)^{n}}{n} \\
\text { com. } \\
x=4 & \sum a_{n}=\sum \frac{1}{n}
\end{array}
$$

Thus the power series com when $2 \leqslant x<4$.
Thu For a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilitities
(1) series con only when $x=a$
(2) series conn for all x
(3) there is $R>0$ st. series com for $|x-a|<R$ div for $|x-a|>R$

Def. The number R is called the radius of comergence.
Def The interval of convergence is the interval that consists of all values of x for which the power series com.

Example $2^{\prime} \quad R=2 \quad Z=[2,4)$
Example 3. $\sum_{n=0}^{\infty} \frac{n(x+2)^{n}}{3^{n}}$

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)(x+2)^{n+1}}{3^{n+1}}}{\frac{n(x+2)^{n}}{3^{n}}}\right| \\
&=\lim _{n \rightarrow \infty} \frac{|x+2|}{3\left(1+\frac{1}{n}\right)}=\underbrace{\frac{1}{3}|x+2|}_{\text {<l }} \\
& \Rightarrow R=3
\end{aligned}
$$

when $-5<x<1$
Boundary cases

$$
\begin{array}{rlrl}
x & =-5 & \sum_{n=0}^{\infty}(-1)^{n} \frac{n}{3} d i \\
x & =1 \\
\Rightarrow I & \sum_{n=0}^{\infty} \frac{n}{3} d i v \\
& =(-5,1)
\end{array}
$$

Last time power series This time functions as power series
In this section, we will learn how to represent some function as a power series. Application for this bechique is that we may approximate certain integrals which does not have an elementary antiderivative.
We start by discussing how to find the power series representation by substitution, intergation and differentiation.
Recall we have seen $\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n} \quad|u|<1$
Example 1

$$
\begin{aligned}
& \frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{2} \\
& \text { Take } u=-x^{2} \\
& |u|=\left|-x^{2}\right|=x^{2}<1=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \text { when }|x|<1 \\
& \Leftrightarrow|x|<1
\end{aligned}
$$

Example 2.

$$
\begin{aligned}
& \text { le 2. } \begin{aligned}
\frac{1}{2+x} & \left.=\frac{1}{2} \frac{1|x|}{1+\frac{x}{2}}=\left|-\frac{x}{2}\right|<1 \Leftrightarrow \right\rvert\, x \\
2 & \frac{1}{1-\left(-\frac{x}{2}\right)} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}
\end{aligned}
\end{aligned}
$$

when $|x|<2$

Term-by-term differentiation and integration
The If $\sum \mathrm{Cn}(x-a)^{n}$ has radius of convergence $R>0$ then $f(x)=\sum \ln (x-a)^{n}$ is differentiable on $(a-R, a+R)$ and

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty} n c_{n}(x-a)^{n-1} \\
\int f(x) d x & =C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
\end{aligned}
$$

One cam prove this by computing

$$
\frac{d}{d x}\left(\sum_{n=0}^{\infty} c_{n}\left(x-a_{0}\right)^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}(x-a)^{n}
$$

Example 3

$$
\begin{aligned}
\frac{1}{(1-x)^{2}} & =\frac{d}{d x}\left(\frac{1}{1-x}\right) \\
& =\frac{d}{d x} \sum_{n=0}^{\infty} x^{n} \\
& =\sum_{n=1}^{\infty} n x^{n-1} \quad \text { when }|x|<1 \\
& \text { not } n=0
\end{aligned}
$$

Example 4 Sol 1.

$$
\begin{aligned}
\ln (1+x)-\ln (1+0) & \stackrel{0}{=}=\int_{0}^{x} \frac{1}{1+t} d t \\
\Rightarrow \ln (1+x) & =\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} t^{n} d t \quad \text { Take } u=-t \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} t^{n} d t \quad \begin{array}{l}
|u|=|-t|<1
\end{array} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{t^{n+1}}{n+1}\right]_{t=0}^{x} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \quad \text { when }|x|<1
\end{aligned} \quad \begin{array}{ll}
\Rightarrow \ln (1+x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \quad|x|<1
\end{array}
$$

Sol 2

$$
\begin{aligned}
{ }^{2} \ln (1+x) & =\int \frac{1}{1+x} d x & & \\
& =\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x & & \text { Take } u=-t \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int x^{n} d x & & \Rightarrow|t|<1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+C & & \text { when }|x|<1
\end{aligned}
$$

To determine C : take $x=0$

$$
\ln (1+0)=0=C
$$

Example 5. (did in problem session) sol 1 ?

$$
\arctan x-\arctan 0=\int_{0}^{x} \frac{1}{1+t^{2}} d t
$$

$$
\arctan x=\int_{0}^{x} \sum_{n=0}^{\infty}\left(-t^{2}\right)^{n} d t \quad \begin{aligned}
& \text { Take } u=-t^{2} \\
&|u|=\left|-t^{2}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} t^{2 n} d t \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{t^{2 n+1}}{2 n+1}\right]_{t=0}^{x} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

$$
|u|=\left|-t^{2}\right|<1
$$

$$
\Rightarrow|t|<1
$$

$\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ when $|x|<1$
Sol 2

$$
\begin{aligned}
& \arctan x=\int \frac{1}{1+x^{2}} d x \\
&=\int \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} d x \quad \text { Take } u=-t^{2} \\
&|u|=\left|-t^{2}\right|<1 \\
&=\sum_{n=0}^{\infty}(-1)^{n} \int x^{2 n} d x \quad \begin{array}{ll}
|t|<1
\end{array} \\
&=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+C r \begin{array}{l}
c=0 \text { as } \\
\arctan 0=0
\end{array}
\end{aligned}
$$

This time: Taylor and Maclaurin series Thu If f has a power series representation at a

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad|x-a|<R
$$

then $c_{n}=\frac{f^{(n)}(a)}{n!}$
pf. Compute $f^{\prime}(x)=\sum_{n=1}^{\infty} c_{n} n(x-a)^{n-1}$

$$
f^{\prime \prime}(x)=\sum_{n=2}^{\infty} C_{n} n(n-1)(x-a)^{n-2}
$$

Taking $x=a$ yoelds the only nonvanishong berm is the 0 -th order term

$$
\begin{aligned}
f^{\prime}(a) & =1 \cdot c_{1} c^{\prime \prime}=2!c_{2} \\
f^{\prime \prime}(a) & =1 \cdot 2 \cdot c_{2}=n \\
& \vdots \\
f^{(n)}(a) & =1 \cdot 2 \cdot 3 \cdots n=n!c_{n}
\end{aligned}
$$

We define Taylor series of f centered at a to be

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \quad|x-a|<R
$$

When $a=0$ we call $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$
Maclaurin series.

Example 1. $f(x)=e^{x}$ at 0
$f^{(n)}(x)=e^{x}$ for all n.

$$
\Rightarrow e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text { for all } x
$$

Radius of com.

$$
L=\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right|=0^{<}<1
$$

$\Rightarrow R=\infty$ as the series always conn.
Example 2. $f(x)=\sin x$ at 0

$$
\begin{aligned}
& f^{\prime}(x)=\cos x \quad f^{\prime \prime}(x)=-\sin x \\
& f^{(3)}(x)=-\cos x \quad f^{(4)}(x)=\sin x \\
& \Rightarrow \quad \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \text { for all odd } x .
\end{aligned}
$$

odd function
again $R=\infty$ as

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2}}{(2 n+3)(2 n+2)}\right|=0<1
$$

Example 2' Check that only even powers $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ for all x even function

Application: estimate integral.
Let's look at a particular integral Example 3. $\int_{0}^{1} e^{-x^{2}} d x$

- First the Maclauris series of $\int e^{-x^{2}} d x$ is

$$
\begin{aligned}
\int e^{-x^{2}} d x & =\int \sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int x^{2 n} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1) n!}+C
\end{aligned}
$$

- Evaluate at $x=0$ and $x=1$ gives

$$
\int_{0}^{1} e^{-x^{2}} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) n!}+c-c
$$

- Say we take the first five term, the value

$$
1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\frac{1}{216} \approx 0.7475
$$

Recall the alternating series estimation, the error here is bounded by

$$
|R|<\left|a_{6}\right|=\frac{1}{11.5!}<0.001
$$

Application: approximating functions we call

$$
T_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

the N-th degree Taylor polynomial of f at a.

$$
N=1 \quad T_{1}(x)=f(a)+f^{\prime}(a)(x-a)
$$

tangent line

Error $\left|R_{N}(x)\right|=\left|f(x)-T_{N}(x)\right|$

$$
\text { Taylor's inequality } \leqslant \frac{M}{(n+1)!}|x-a|^{n+1}
$$

where $\left|f^{(n+1)}(x)\right| \leqslant M$
Example 4. $f(x)=\sqrt[3]{x}$ with $N=2$ at $a=8$

$$
\begin{array}{rlr}
f(x)=x^{1 / 3} & f(8)=2 \\
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} & f^{\prime}(8)=\frac{1}{12} \\
f^{\prime \prime}(x)=-\frac{2}{9} x^{-5 / 3} & f^{\prime \prime}(8)=-\frac{1}{144} \\
\Rightarrow \tau_{2}(x)=2+\frac{1}{12}(x-8)-\frac{1}{288}(x-8)^{2} \\
\left|f^{(3)}(x)\right|=\left|\frac{10}{27} x^{-8 / 3}\right|_{\text {for }} \leqslant \geqslant \frac{10}{27} \cdot 7^{-8 / 3}<\frac{M}{0.0021}
\end{array}
$$

with in $7 \leqslant x \leqslant 9, \quad|x-8| \leqslant 1 \Rightarrow$ error $R_{N} \leqslant \frac{M}{3!} \cdot 1<0.0004$

List of Maclaurin series

$$
\begin{array}{rlr}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} & -1<x<1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & -\infty<x<\infty \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} & -\infty<x<\infty \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} & -\infty<x<\infty \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} & -1<x<1 \\
\arctan x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} & -1<x<1
\end{array}
$$

