
Ch 11
. Infinite sequence and series

Def. An sequence is an infinite list ofmembers
wntteÉa definite order.

no

Notation : { ai , az, - - -

,
an
,

- - }
,
{an} or {an }n= ,

Examples { 1 , 2. 3 . 9 . - .
- )

( 7 , I . 8 , 2. 8 , - -
. }

Some sequences can be defined by giving a formula
for the n-th term an

Examples i. an = (E)
"

Ian } = {E. ¥ .

- - . }

2
.
an = 1- 1)

"

{ an } = { -1, I , -1, I, - - . }

3. an = ¥ Ian } = It
. 3-. 3-. . - . }

some
sequences may

not have a simple/explicit
defining equation

Examples 1. an = the digit in the n - th decimal
place of a

2
.
The Fibonacci sequence
a
,
= 1

,
az = I

,
An = An-1 + an-2

{ 1 . I , 2 , 3 , 5 , 8 , 13 .
21 . - - . }



A sequence
"

is
"

a function f- that only takes
values on natural numbers

.

So we will study
properties such as graph and convergences .

Example
^

\ him an = O

n→ is

L < is

Ref. A sequence
has limit L if for any ethere is an NS.t.ifn>N then
Ian - Ll a E

we
say tan cages

to L
.

Intuition

'

-

.

-

.

.

.

.
.

.

. . I &

'

-

Ref. him an = is means that for every"→•

positive number M there is an

integer N at . if n >N then an > M .



Examples
1. lim-n-hjgsi.tn = '
n→ is

n→-
In = {

° if r > ☐
2. him

as if rao

0 if -1 < r < I
3. him r" =\n→is if r=/

is of r > I
DNE if r < I

Limit law for sequences
if {an } .

{but are convergent sequences then

him ( an± bn ) = him an ± him bn
n→ is n→ is n→ is

time can = c him an C const
.

n→is n→ is

him an bn = him an • him bn
n→ is n→ is n→w

him an
n→ ishim I =
limbnn→- bn
n→ is

him a! = Him a)
P

p > o an> o

n→ is n→ is



Squeeze Theorem
bn E an E Cn ⇒ him an =L

n→ is

1
< 1

Them If him land = 0 then him an = 0
ms is n→ is

If f- is continuous
him an =L ⇒ him f-cant = f-(L)
n→ as n→w

Example 1.
him sin (E) = sin Him E)
n→ is

n→ is

= sin 0 = 0

Example 2 .
lonehuman
→is ln( It 4h )

ln(✗+2)
<
'

Hopital ¥-2
him
✗→• ent+→

± him
✗→ is

= him 4×+1

✗→ is 44¥
= I



Example 3 .

IES (+ %)
"

= him eenHH
"

n→is

= e £1s
nln (1+4)

÷
him hl÷ = him

n→.n→is

= fi÷¥n = I



Last time : sequence
This time : series .

Def. We call E. an or Ian a series and
N

SN = ⇐ an = a, + azt - - . + aw the

partialsum.SN
ote that {SN1 is itself a sequence .

So it make

sense to talk about if I sat converges or not .

Def. The series Ian is called convergent if its
partial sum is convergent .

Otherwise Ian is

called divergent

Example 1. (geometric series )
consider an = r" r : common ratio .

do = to = 1 So = do = I

a, = r
'

= r s, = do + a, = I + r

az = Ñ = v2 Sz = do + an + 92 = I+ r+ v2

: :

I
t

Sµ = It r -1 r'+ . . . + rN

-

we are interested in this sum .



Let RN = £ rn = /+ r+ r't - - - + rN
N20

II. I
RRN = r + r' + - - - + ftp.N-l

⇒ RN - rRw = /- r
""

l- hut /
⇒ Rn =⇒

É rn = him RN
n=o N→w

→
In -_o ¥ if -1 < r< I come.

=\ - if r ? I ← die .

DNE if re -I ←

as

I rn =/ + IrnIrn = ÷ because
n⇒h=/ n=/

Example 2 . Compute 7%22^3 "" using the above
is

£ 22h6 '
- ^
= I (2)

n
. f. 6-

n note that n
start from 1h=/ h-_ I

= 6. ⇐ 1%1 "
+

= 6. ÷÷
÷

= 6 . 2 = 12



Example 3 . (harmonic series )
is

I 4- = it f- + 3- + 4- + . . -

h2 1

52 = It I

S4 = it 1- + b- + -14 > I + f- + f- + -14
= /+ 2-

so = it -12 + 3- + -14 + f- + f- + f- + f-
> /+ I+Éi&+&+'-
=/+ I ± I

i.

Szn = / + 2- n→→ •

Hence Én diverges

Example 4 . Én = 1 .

Note that nf# = f- -¥

sn = f-¥1 +1¥ -* +* -⇒ + . . . + An -⇒
= I -¥ → I



Theorem % an , ⇐ bn converges , c
const

.

£
,

an ± bn = % an ± Ébn
A-I

E can = cÉ an
nay

• 3

m¥ + InExamples E.
= Ton

we have É
,

In =⇐ - I

= 2- I = I

E '

n=/ h(#
= 1

So the original series converges to
3 . I + I = 4



Then I an convergent ⇒ him an = 0
N21 n→ is

pf. By definition , we know him sn =L for somen→ is

real number L
.

⇒ him Sn-I = him sn =L
n→is n→ is

him an = him (Sn - Sn-i )
n→ is now

= him Sn-I - him Sn
n→ is n→ is

= L - L = 0

comeall
any
(The divergence test )

If him an -1-0 then E-
,
an diverges

n→w

Examples i. -2%1-11 "

2%4+1-1 all diverges

3. É÷



Last time computing series .

This time integral test & estimates .

We have been computing exact value of a series
so far for some special cases. However, in general
it is quite difficult. Ln those cases, we are
interested in finding an estimate .

The ( the integral test )
suppose fix > 0 is a continuous decreasing
function for ✗ 21 such that an = f-em .

Then

⇐ an com
.
⇐ ✗fix , dx come

.

^ ^

I
I 2 3 4 5 6 I 2 3 4 5 6

Moreover
,

I?fcxidx a- ⇐ an = a. +[fix dx (A)

N is

Error RN = an - I an = £µ+,an
M2 I

fix dx = RN = [finds



Example 1. £
,
-1ns come.

fix, = ¥ > 0 for ✗71 coat
.

and decreasing
1

/I¥ dx come. f-
'1×1=-2×-3 <o

for ✗71

Example 2 . É÷p is com. if p > I
die if p=l

Example 3 . É¥ come
.

fix, -_¥ > 0 for ✗71 , cont . and decreasing
I

f-' (x) = - 1×2+152 . 2x co for 77 I

t

[¥, dx = him anotanx )
,c-→ is

= him ardent - ¥
c-→ is

= E- E- = ¥ < is



Last time : integral test .
This time : the comparison test

The idea of the comparison test for sequences
is similar to that for integrals .

'

7hm ( the comparison test )
Tuppose Ian and I bn are series with
positive terms and an z bn for nz N.

I am come ⇒ I bn come.

I bn die ⇒ I am dir

compare the above with the comparison test
in Chf. f-

an← f-
bn - g

gE -f
N ← a

N=a

Example 1.
I 5

n=, ZN21-4NT

2h
'

+ 4h -13 72h2 for N71
5 N= 1 here

⇒
ZN21-4NT E%
→ b-
I⇒ = EEE < is ⇒ Ian com.

n=|



Example 2 . Éln÷
Note that lnn > 1 for n >e

⇒ tnnn_ > In for me
T

In In
eg .

we can take N=3

%t drv ⇒ Landru ⇒ £ an die.

n=3 n=l

Them ( the limit comparison test )-

Suppose Ian ,
I bn are series with positive

terms and him
an

msn.TN
= C e (0, a)

Then I am come ⇐ I bn come
.

Example 3 . £
,
¥ Take bn= In

E-⇐ = has "%⇒=k÷÷,
= him 1-12-7 = 1 C- 4. is)

n→ is

⇐ In come ⇒ Ian come
.



Example 4 .

£ any;]
dominantpart is an

n=I5+n#←④ = n°12

Take bn = 2%-2 = In

£:& =L: "¥÷÷
2h%-1 3h42

= £5s 25¥
2-1 2-

= £7s zj÷#
= I = I

É In drv ⇒ Ian dru



Last time : comparison tests
This time : alternating series .

So far we've studied series with positive
terms

.
In this section we will study series whose

terms are alternating (e.g .
aan > 0 , damn co ).

Examples 1
.

I c-IT ' In = I - -1+13--1-4 + . . .

A-I

2
.

£ HI " = -I + I - I + I - . . .

n=1

The following theorem tells us how to determine
if an alternating series converges or not .
The (Alternating series test )

①
Given E th " an

,
an > 0 if

h=o ③
② an-11 I am for all n and him an = o

n→is

then Ic-IT an
converges .

H20

pf. Consider the evenpartial sums (which
have positive terms because anti E and

San = San-2 +LET} San-2 In > 1)



{San } is apositive monotoneasmy sequencehence
converges , say
him San = S
n→ is

Then thepartial sum converges by limitlaw
htm Sant, = lik Sant aan-11
n→- moons

= S + 0 = S

Moreover
, from the aboveproof, we see that

if him an ahh , the series die . So
↳ is

divergence test still holds

Example I. (alternating harmonic series )
I '

come .
n= I

check : an = In > o
anti = ¥ = In = an

bon an = o
n→ is

so the alternating series test tells the
series come



Example 2 .

I come .

that N3T I

check • an = LET = o for all n .

• anti E An for N72 because the function
✗
2

fox) =# is decreasing ( not obvious )
✗(2-73)

fix =µ# a o when ✗ > Tag

• born an = figs :# = bgg.tn#--o)kE2↳is

Apply the alternating series test for nzz .

⇒ Emilian com.

⇒ I c-IT an = ao - an + I c-is " an
n=O
- n=2_

finite < is as com.

number

< is



Estimating alternating series .
The (Alternating series estimation then )

Given ÉHI " an
,
an > 0 satisfyingn=O

anti E an and born an = 0
now

then IRNI = Is - Snl E anti

pf. Recall that son is positive and nowncreasing
Let s = try San .

Then S # San for all n .

Similarly ,
s ÉSari (oddpartial sums )

⇒ Is - snf =\
s - Sm E Smit - Sm m odd

- (s- Sm) E - (Smt , - Sm) m even

I
met even - S E -Sm+|

odd

⇒ Is- Sml E Ismti - Snl = anti



Last time : alternating series test
This time : absolute

convergence
andmore tests

Def A series Ian is called absolutely convergent
if the series of absoluteevaluÉi
convergent .

Def_ A series I am is called conditionally come.

if it is convergent but notabs.com#

Note that absolutely cow is stronger than
convergent. That is ,

abs.com
.

⇒ come
.

pf. Observe that - an Elaine an

⇒ O E an +WE 21am )

Apply theaompawsontast-An-Bn.IB.name⇒ I An corn
.

then I am = IAn - -2oh < is
.

I → →

by one of theproperties ofseries



Example 1. É⇐it't come. Ét not come.n= ,

Hence we say
£ c-IF't is conditionally come.n=\

but not absolutely come.

Example 2 .

I⇐it't and It both come.
n= I n=I

£ c-IF'tn is conditionally come.Hence we say n=,

and also absolutely come.

The (the ratio test )
Goren a series Ian

,

let

L = him
n→-1%-1-1

< 1

if < \ > ,
Ian abs.com

.

= ,

then ④ an div

no conclusion

The (the root test )
Goren a series Ian

,

let

L = him
"

n→ is

a 1 I am abs.com
.

if < \ > , then ⇐ an div
= I no conclusion



Remark
1. Note that we have absolute com

.

2
. 2=1 case examples

E In div & É ⇐it' I come
n= I H21

but in both cases L (for the ratio test )
is given by

an nT÷-|= an n

n→ is n→- n+T
= I

3. prototype for both tests : geometric series

↳ = lung
hmm = In
n→-

I↳ = lungs
"

1mF

we know

IM < I come
.

IN > 1 IN .



Example 1 .

E n
'

nor (2n
a- a sign for ratio test
(n-11)

2

(2(n-l)
L = him

nzn→\µ-i
(n-1 1)

2

= born
n→ is (2n+l).(zn)÷

= 0 < 1

Hence the series abs.com
. by ratio test.

Example 2 .

I
A-0

⇐in
'

⇐ •
n→ is C-1)

"

n'+ I
= him
n→ as N2-1ZT

= 1

The ratio test is not useful .

Instead one can use the alternating series
test to conclude this series com.

and use

comparison test for abs.com .

4 An =⇐ E Bn = £



Example 3 . %\%¥⇒
L=emÑE"

n→ is

= him
↳• I::⇒

.

= him 9n ' + but I
n→- 4n'-f6n+T

= £ > 1

The series converges absolutely by root test .

Example 4 . É(+ tnj
"

L = eimÑ+÷
n→is

= him 11 + tnT
"

n→is

= to 1

The series converges absolutely by root test .

For strategy of choosing com.
tests

see
"

Tennentany Resources
"

on course webpage



This time :

power series .

Def A power series centered at a is a series of

theform-I.cnH-at = co + aH-a) + cztx-at+ . . .

Here × is a variable
,
Cris are coefficients .

Example 1 .

Take a=o
,
then Icnx" is

f-IX1 = Co + C
,
✗ + cix

'

+ - - -

apolynomial with infinitely many terms .

Moreover if ca =\ for all n, then

f-1×1 = it ✗+ It - - .

= £an
h=O

is ageometric series , we know it come when 1×1<1 .

The above example shows that apower series
may converge for some

values of × and diverges
for other values of ×. We can use convergences
tests to determine that

.



Example 2 . É⇐_n
Ratio test :

< =¥\*\
1×-31

= £-7 ,+→
= 1×-31

come
.

when 1×-31<1 ⇒ 2 < ✗ < 4

IN > I ✗ < 2 or X > 4

Boundary cases :

✗ = 2 Ian = I_ come
.

✗ =4 2- an = -2 In drv

Thus thepower series come when 2 E 7<4 .

The For apower series
£ anti-a)" there are
n=O

only three possibilities
(1) series come only when ✗= a

(2) series com for all ×
(3) there is R > 0 It.
series corn for H- a) < R

div for 4- at > R



Def The number R is called the

nadiusofconvergence.pef-Thei~E.isthe interval

that consists of all values of ✗ for which
thepower series com.

Example 2
'

R = 2 2 = [2. 4)

Example 3 .

I "×;n""_
h=o

⇐←

= him" =

t*n→ is 3 (1+4)

⇒ R =3 when -5< ✗< 1

Boundary cases
✗ = -5 I c-11 "3- dN

✗ =/

"

É 3- die
H20

⇒ I = (-5, 1)



Last time power series
This time functions as power series

In this section , we will learn how to represent
some function as a power series . Application for
this technique is that we may approximatecertain integrals which does not have an
elementary antiderivative .

We start by discussing how to find the power
series representation by substitution, interrogation
and differentiation .

Recall we have seen = E un Into a 1
A-0

Example 1
,

.

Ñ
= ,_[→ = If- x-p

Take a = -72
= n%(-1) "x" when 1×1<1IU1 = 1-✗4 = ×

'
< I

⇒ 1×1<1

Example 2 . lui =\ - E) < I ⇒ 1×1<2

¥, = 41¥ = '=i
= -1%-1 =É÷i

when 1×1<2



Term-by -term differentiation and ohtegnation
The
Zf Icncx-ai has radius of convergence R

- 0

then fix, = [ an Cx-a) " is differentiable on
(a-R , atR ) and

f-
'

ix ) = £ non (x- a) ""
A-0

/finds = C + £ a.H-as
hoo h-11

One canprove this by computing
-1×1%4- am = E- % -at

Example 3 .

É = do
= da Ex

he

= £ nx" when 1×1<1
N21

not h=o
.



Example 4 Soll .

lncitx , -Into, °

[⇐ at

⇒ lnciix ) = f.
✗

II. c- 1) " that Take u= - t
IU1 -- 1- that

= E. C-1) "/
✗

← dt
⇒ Iti - I

=E←i\ÉÉT⇐
.n=O

= ÉHi*_ when 1×1<1
n-11

⇒ lnu-ixi-E-iif.IT 1×1<1

Sol 2
ln(HX ) = /¥ dx

Take u= - t=/II. C- 1) "✗" do IU1 -- 1- that
⇒ 11-1<1

= E. Hi "/✗" oh,
= É←i¥n+ , + C when 1×1<1

To determine C : take ✗=o
bill -10 ) = 0 = C



Example 5 . (did in problem session )
soll

.

✗
,

arotanx-arf-ano-f.co#dlarctanx--fjEn=ol-t4ndtTake a = - t '

tut =\ - c-4<1
⇒ 41<1

= É☐(-11 "[ c-" dt

=É←if⇒2h -11
f-0

=É⇐i%
is

n ✗
2h-11

arctan ✗ = £
.

H1 2NT when 1×1<1

Sol 2
arctanx = /⇒! dx

= /E. C- ✗ 2) "dx Take a = - t '

tut =\ - c-4<1
⇒ 41<1

= É☐ C-1)
"/x" oh,

is

n ✗
2h-11

= It"# + cyc=o as
arcfan 0=0



This time : Taylor and Maclaurin series
The Zf f- has apower series representation
at a

fix ) = E. anti- a) " H-ale R

then on = f'"n;→
pf. Compute fix) = £, cnn.in-aim

f-
"

IX ) = £ Cnn (n- 1) (x- a)"-2
n=2

i.

Taking ✗ = a yields the only nenvanishohg term
is the o- th onder term

f-'(a) = 1 . C , I

f
"

(a) = 1- 2.cz = 2 ! C2

i.

f- 'n'(a) = I - 2- 3 -
- - n on = n ! Cn

We defineT.FI of f- centered at a
to be

fun = E f%¥ ex-at tx-ale R
h=o

when a=o we call
_[ f" yn
hoo n !

Maclaurmserr=



Example 1. fix ) -_e× at o
f- 'n' 1×1 = e

" for all n .

⇒ ex = E. IT for all ×

Radius of come.

ELF
.

Check this
<=Es|÷-|= 0%1

⇒ R= is as the series always come.

Example 2 . fox , __ sihr at 0

f- 'ix) = cos ✗ f-"☒ = -sin

f-"
'
(x) = - cost f-'"a) = sihx

n yami
c- only addpower,survive

⇒ sinx=ÉH(¥ for all × .

I n=o

odd function
again R=

is as

✗
2

£Ez|%E-|=lim|yn+})(zn→= 0<1n→w

Example 2
' check that

surviveoosx=E⇐,nÉoYaÉ"""
T neo (2m ! for

even function



Application : estimate integral .
Let's look at aparticular integral
Example 3 . fo

'

e-×
'

dx

• Forest the Maclaurin series of /e-×
'

dx is

/ e-✗
'

oh, = I£
,

dx

= %
.

/x" dx

= I C-1)
"

you

n=o (2n-|#
+ C

• Evaluate at ✗ = 0 and ✗=L gates

Iie-"dx = E.FI?+nn:-+c-c
• Say we take the first five term ,

the value
is

I - b- + To - ¥2 + LT6 = 0.7475.

Recall the alternating series estimation, the
error here is bounded by

IR1 < I act = 111.5T < 0.001 .



Application : approximating functions
We call N f-'n' (as

Ivan = E.⇒ 4-at

the N- th degree Taylorpolynomialoff at a .

N = I T, 1×1 = f-(a) + f- '(a) (x- a)
tangent line #

Error /Rival = I fix ) - Tamil

Taylor 'sinequality (% H-al
"'

where / f- '"" ex ) / E M

Example 4 . fix)=Tx with N=2 at a=8 .

f-1×1 = ✗
%

f-(8) = 2

f- 'ix, = b- x
-%

f-
'

(8) = 1-2

f " (x) = - 2g ✗
-5/3

f-
"

(8) =
-¥

⇒ 721×1 = 2-1%(7-8) - Egg 1×-812
M

/ f- '"ex) / =\# ✗
→" \ = % . 7-

%
< 0.002T

for ✗ 77
with in 7- a- ✗ E9 , 1×-81 E I ⇒

error RN I ¥ . I < 0.0004 .



List of Maclaurin series

1

1� x
=

1X

n=0

xn � 1 < x < 1

ex =
1X

n=0

xn

n!
�1 < x < 1

sin x =
1X

n=0

(�1)n
x2n+1

(2n+ 1)!
�1 < x < 1

cos x =
1X

n=0

(�1)n
x2n

(2n)!
�1 < x < 1

ln (1 + x) =
1X

n=1

(�1)n+1x
n

n
� 1 < x < 1

arctan x =
1X

n=0

(�1)n
x2n+1

2n+ 1
� 1 < x < 1


