Last time Calc I Review This time Integration by parts Motivation using Calc I knowledge (FTC) we know the antidersuotive of \overline{x} is $\frac{1}{2}x^2+C$ $cos X$ $sin X$ It is natural to ask what is the antiderivative of lux? tan x? To solve this problem we need a now tool. Recall product rule $(uv)' = u'v + uv'$ if we integrate on both sides wit. X. \Rightarrow $\int uv dx = \int uv' dx + \int u' v dx$ $=\int u\,dv$ + $\int v\,du$ rearrange $\int u\,dv = uv - \int v\,du$

Example 1 compute / lnx dx take $u = ln x$ $v = x$ $\int ln x dx = x ln x - \int x dt$ = $x \ln x - \int x \frac{1}{x} dx$ $=$ $xlnx - x + C$

NB. There's a list of choices called LIATE rule tells which function to choose as u first However in general there's no easy way to tell immediately which function to take as u or v.

la log
arcsin arccos arctan : \angle $\mathcal{I}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ algebraic x 1+x2 \boldsymbol{A} $sin cos$ ${\cal T}$ e^{x} E

Example 2 / arctours dx = $x \cdot \arctan x - \int x \cdot d\arctan x$
= $x \cdot \arctan x - \int \frac{x}{1 + x^2} \cdot dx$ u se substitution law
= $\frac{1}{2} \int \frac{d(x^2+1)}{x^2+1} = \frac{1}{2} ln(1+x^2) + C$ = x arctan $x - \frac{1}{2}$ $ln(1+x^2) + C$ Example 3 $\int xe^{x} dx = \int x dx^{x} dx$ = $xe^{x}-\int e^{x} dx$
= $xe^{x}-e^{x}+C$ Step 1. Choose functon u.
2. The choice of v depends on u.
That is, in order to match the Integration by
parts formula, say we are computing $\int f(x) dx$ Then we claim $dv = \frac{f(x)}{u(x)} dx$, so that $\int f dx = \int u \cdot \frac{f}{u} dx = \int u dv$

 $\int \frac{x^3}{\sqrt{1+x^2}} dx = \int x^2 \frac{x}{\sqrt{1+x^2}} dx$ Example 4 $=\frac{\frac{1}{2}d(x^{2}+1)}{\sqrt{1+x^{2}}}$ = $d\sqrt{1+x^{2}}$ $=\int \frac{x^2}{4} \frac{d\sqrt{1+x^2}}{v}$ = $x^2\sqrt{1+x^2}$ - $\int \sqrt{1+x^2} dx^2$
= $d(x^2+1)$ = $x^2 \sqrt{1 + x^2} - \frac{2}{3} (1 + x^2)^{\frac{3}{2}} + C$ NB. There's more than one way to solve Ext. Example 4' $\int \frac{x^3}{\sqrt{1+x^2}} dx$ substitution rule $u = 1 + x^2$ du = 2x dx
 $x^3 dx = x^2 (x dx) = \frac{1}{2} (u-1) du$ $\int \frac{x^3}{\sqrt{1+x^2}} dx = \int \frac{\frac{1}{2}(u-1) du}{\sqrt{u}}$ $=\frac{1}{2}\int \frac{u}{\sqrt{u}} - \frac{1}{\sqrt{u}}$ du $= u^{\frac{1}{2}} - u^{-\frac{1}{2}}$ = $\frac{1}{3}u^{\frac{3}{2}}-u^{\frac{1}{2}}+C$ = $\frac{1}{3}(7+x^2)^{\frac{5}{2}}-(7+x^2)^{\frac{1}{2}}+C$

Last time Integration by parts /^u du ⁼ uv - $\int u \, du = uv - \int v \, du$ This time: we focus on a perticular type of integral integers ← [→] $integ$ \int sin $\sum x$ cosⁿ x dx \otimes Tools to solve $&$ (A) substitution rule (B) trig identity (C) double angle formulae $cos^2 x + sin^2 x = 1$ $sin(2X) = 2 sinh X cos X$ $\cos(2x) = \cos^2 x - \sin^3 x$ $x = 2 cos^2 x - 1$ \int Remember these equations = 1-2sin²x Note that (D) implies $sin^2 \chi = \frac{1-Cos 2\chi}{2}$ $cos^2 \chi$ \overline{x} = $\frac{1+cos 2x}{2}$ we'll start by looking at the following examples.

 $\int sin^{3}x cos^{2}x dx$ Example 1. $=$ $\int sin^2x$ cos²x sinx dx $1 - \cos^2 x$ substitution $u = \cos x$ = $\int (1-u^2) u^2 (-du)$ $du = -sinx$ dx $=$ $\int u^4 - u^2 du$ $=\frac{u^3}{5}-\frac{u^5}{3}+C$ $= \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C$ In general, if m or n is odd we can use
substitution rule u = cos x, sin x. Example 2 $\int cos^2x sin^2x dx$ $=$ $\int \frac{1+cos 2x}{2} \cdot \frac{1-cos 2x}{2} dx$ $=\frac{1}{4}\int$ 1-cos²zx dx $=\frac{1}{4}$ / $-\frac{1+cos 4x}{2}$ dx $=\frac{1}{8}\int$ 1 - cos 4x dx $=\frac{1}{8}x-\frac{1}{32}sin 4x+C$ If m and n both are even we can use
trig identity and double angle formulae.

Similarly we can compute Stan"x sec"x dx

Tools to solve & (A) substitution rule (B) trig identity $sec^2 x = 1 + tan^2 x$?
(C) double angle formulae

Recall $(tan X)' = sec^2 X$ (sec X)' = sec X tan X

Example 3. / tanx sec⁴x dx = \int tanx see²x sec²x dx = \int tanx (1+ tam²x) sec²x dx = $\int u (1+u^2) du \le \alpha + \alpha x$ $=\frac{1}{2}u^{2}+\frac{1}{4}u^{4}+C$ = $\frac{1}{2}tan^2x + \frac{1}{4}tan^4x + C$

Another way to compute this Take $u = \sec^2 x$ $du = 2 sec^2 X$ tan X dx Then \int tanx sec⁺ x dx = $\int u \cdot \frac{1}{2} du$ = $u \cdot \frac{1}{2}a$
 $\frac{u^2}{4} + \widetilde{c}$ = $\frac{4+1}{1}$
 $\frac{sec^{4}x}{4} + \widetilde{C}$ 4
= $\frac{4}{4}(1 + \tan^2 x)^2 + \widetilde{C}$ $\overline{\mathcal{F}}$ $\overline{}$ $\frac{tan^{4}x}{4} + \frac{tan^{2}x}{2} +$ $rac{1}{7} + \widetilde{C}$ $\frac{1}{4} + \widetilde{C}$ $=$ \mathcal{C}

☒ Here ²'m checking these two method gives the same solution. You don't need to write these in homework.

In this section we consider the contains sequare
rosts of the form $\sqrt{a^2-\chi^2}$ $\sqrt{\chi^2+a^2}$ $\sqrt{\chi^2-a^2}$ We will make trig substitutions $\sqrt{a^2-\chi^2}$ $\sqrt{x^2+a^2}$ $\sqrt{x^2-a^2}$ $x = asin\theta$ atand aseco $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad \left[0, \frac{\pi}{2}\right) \quad \sigma \left[\pi, \frac{3\pi}{2}\right]$ $cos X \ge 0$ $sec X \ge 0$ $tan X \ge 0$ Note that we can use trig identities to remove $x = a sin \theta$
e.g. $\sqrt{a^2 - \chi^2} = \sqrt{a^2 - a^2 sin^2 \theta}$ $= \sqrt{a^2 \cos^2 \theta}$ $= |a cos \theta|$

NB. We have to specify range of 0 so that we
can remove | |

Example 1. 19-x² dx Take $x=3s m\theta - \frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ $=$ $\int \sqrt{9-(3\sin\theta)^2} d(3\sin\theta)$ $= |3\cos\theta| \cdot 3\cos\theta d\theta$ Note that $cos \theta > 0$ for $=3cos\theta$ $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ $= 9$ $\int cos^2\theta d\theta$ $= 9 / 1 + \cos 20$ do $=\frac{9}{2}\int$ + cos 20 do $=\frac{2}{2} \theta + \frac{9}{4} sin 2\theta + C$ $2 sin \theta cos \theta$ $=\frac{9}{2}(\theta + sin\theta cos\theta) + C$ = $\frac{9}{2}$ $\left(\arcsin \frac{x}{3} + \frac{x}{3} \sqrt{1 - \frac{x^2}{3^2}} \right) + C$ = $\frac{9}{2}$ arcsin $\frac{x}{3}$ + $\frac{x\sqrt{9-x^2}}{2}$ + C

Example 2 $\int \frac{1}{x^2 \sqrt{x^2+4}} dx$ Take $x = 2 \tan \theta - \frac{\pi}{2} < \theta < \frac{\pi}{2}$ $=\int \frac{d(2tan\theta)}{4tan\theta \cdot [4tan\theta + 4]}$ $=\int \frac{2 \text{ sec}^2 \theta}{4 \text{ tan}^2 \theta \sqrt{4 \text{ sec}^2 \theta}}$ $=\frac{1}{4}\int \frac{\sec^2\theta}{\tan^2\theta}\frac{d\theta}{\sec\theta}$ $=\frac{1}{4}\int \frac{sec\theta}{tan^2\theta} d\theta$ $\frac{1}{\sqrt{380}} \cdot \frac{cos^2\theta}{sin^2\theta} = \frac{cos\theta}{sin^2\theta}$ $=\frac{1}{4}\int \frac{cos\theta}{sin^2\theta} d\theta$ $\frac{d(\sin\theta)}{d\sin^2\theta}$ Recall $tan\theta = \frac{\pi}{2}$ \Rightarrow $\sin \theta = \frac{\pi}{\sqrt{4+ \pi^2}}$ $=$ $-\frac{1}{4} \frac{1}{\sin \theta} + C$ $= - \frac{\sqrt{4+x^2}}{4x} + C$ $\begin{array}{c|c}\n\sqrt{4+x^2} & x \\
\hline\n\theta & 0\n\end{array}$

Example 3. $\int \frac{x}{\sqrt{3-2x-x^2}} dx$ = $-(\chi^2 + 2\chi + 1 - 1) + 3$ $-4-(\chi+1)^2$ Take u= x+1 $=\frac{u-1}{\sqrt{4-u^2}}d(u-1)$ Take u=2sino = $\int \frac{2 sin \theta - 1}{\sqrt{4 - 4 sin^2 \theta}} d(2 sin \theta) - \frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $=\int \frac{2sin\theta-1}{|2cos\theta|}(2cos\theta) d\theta$ $=\int 2 sin\theta - 1 d\theta$ $= -2cos\theta - \theta + C$ $= -\sqrt{4-u^2} - arcsin \frac{u}{2} + C$ $= -\sqrt{3-2x-x^2} - \arcsin\left(\frac{x+1}{2}\right) + C$

Last time integral containing 5 This time integrating national functions Defining rational functions $R(x) = \frac{P(x)}{Q(x)}$ where P.Q are polynomials e. $g: \frac{1}{x+1}, \frac{2x+1}{x^2+4x+3}, \frac{x^4-2}{(x-1)(x^2+1)}$ Z_f^2 deg P < deg α , we call R a proper rational function e. $tion$ $\frac{x}{x^2-1}$ proper χ^4 $\frac{x^2}{x^2+2}$ $\frac{x^4}{(x-1)^2}$ improper How to solve $\int R(x) dx$? Rewrite Rlx) as sum of simpler national functions . Then use substitution rule .

Example 1. $\frac{x}{x+4} = \frac{x+4-4}{x+4} = 1 - \frac{4}{x+4}$ improper proper $\int \frac{x}{x+4} dx = \int -\frac{4}{x+4} dx$ $= x - 4ln|x+4| + C$ Example 2. $\frac{1}{x^2-4} = \frac{1}{(x-2)(x+2)}$ To decompose write $\frac{A}{x-2} + \frac{B}{x+2} = \frac{A(x+2) + B(x-2)}{(x-2)(x+2)}$ Numerator gives $(A+B)x + 2(A-B) = 1$
 $\Rightarrow A = -B = \frac{1}{4}$ $\int \frac{1}{x^2-4} dx = \frac{1}{4} \int \frac{1}{x-2} - \frac{1}{x+2} dx$ = $\frac{1}{4}$ $(ln|x-2| - ln|x+2|) + C$ $=$ $\frac{1}{4}$ ln $\frac{x-2}{x+2}$ + C If Q is a product of distinct linear factors
 $Q = (a_1x + b_1)$ (an $x + b_n$)

take $R = \frac{A_1}{a_1x+b_1} + \cdots + \frac{A_n}{a_nx+b_n}$

 $\frac{5x^2+2}{x(x^2+2x+2)} = \frac{A}{x} + \frac{Bx+C}{x^2+2x+2}$ Example 3. \Rightarrow $A x^2 + 2A x + 2A + B x^2 + C x = 5x + 2$ $\frac{A+B=S}{2A+C=0}$
 $2A+C=0$ $B=4$ $C=-2$ $\int \frac{5x^2+2}{x(x^2+2x+2)} dx = \int \frac{1}{x} + \frac{4x-2}{x^2+2x+2} dx$ = $ln|x| + 2 \int \frac{2x-1}{(x+1)^2+1} dx$
= $ln|x| + 2 \int \frac{2(u-1)-1}{u^2+1} du dx$ = $ln|x| + 4 \int \frac{u}{u^2-1} du - 6 \int \frac{1}{u^2+1} du$ = $ln|x| + 2 \int \frac{d(u^2)}{u^2-1} - 6arctan u + C$ = $ln|x|$ + 2 $ln|u-1|$ - 6 arctanu+ C = $3ln|x| - 6arctan(x+1) + C$

If Q contains distinct irreducible quadratic
factors, take $\frac{AX+B}{ax^2+bx+c}$ for the quadratic term.

 $\frac{4x}{\chi^3 - \chi^2 - \chi + 1} = \frac{4x}{(\chi - 1)^2 (\chi + 1)}$ Example 4 = $\frac{A}{\gamma - 1} + \frac{B}{(\gamma - 1)^2} + \frac{C}{\gamma + 1}$ $4x = A(x+1)(x-1) + B(x-1) + C(x-1)^{2}$ \Rightarrow = $(A+C) x^2 + (B-2C)x + (-A+B+C)$ \Rightarrow $A=1$ $B=2$ $C=-1$ $\int \frac{4x}{x^3 - x^2 - x + 1} dx = \int \frac{1}{x - 1} + \frac{2}{(x - 1)^2} - \frac{1}{x + 1} dx$ = $ln|x-1|$ - $\frac{2}{x-1}$ - $ln|x+1|$ + C $= \ln \left| \frac{x-1}{x+1} \right| - \frac{2}{x-1} + C$ If a contains repeated linear factor say $(ax+b)^r$
take $\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_r}{(ax+b)^r}$ Similarly, for repeated quadratic factor $(ax^2+bx+c)^r$ take A_1x+B_1
ax²+bx+c + --- + $\frac{A_r x+B_r}{(ax^2+bx+c)^r}$

Last time $\int \frac{P(x)}{Q(x)} dx$ This time: Approximate integrals. Motivation In general, it is difficult to compute the
antiderivative of a function and apply FTC.
We then ceek for an approximate value of the
intoaral. integral. Recall in Calculus I, the integral is defined as
limits of Rienann sums. $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \triangle x$

 $\chi_{i-l} \chi_i^*$ $\overline{\chi_i}$

If instead of taking $n\rightarrow\infty$, we sum over a finite
number of intervals. $\int_{\alpha}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_i^*) \cdot \Delta x$

For the finite sum above • The finite sum above
if $x_i^* = x_{i-1}$ left endpoint approx. • $if x_i^* = x_i$ right endpoint approx. • $if x_i^* =$ $\begin{array}{lll} \chi_{i-1} & \text{left endpoint ap} \ \chi_i & \text{right endpoint} \ \chi_{i-1}+\chi_i & \text{middle endpoint} \ 2 & \text{middle part of the top.} \end{array}$

We usually use midpoint approx. Let's write the above formula explicitly

Midpoint rule $\int_{a}^{b} f(x) dx \approx M_{n} = \Delta X (f(\bar{x}_{i}) + f(\bar{x}_{i}) + \cdots$ $+$ f(\bar{x}_n) where \bar{x}_i = midpoints $\Delta x = \frac{b-a}{n}$

Another way to approximate the integral is the

Trapezoidal rule $\int_{a}^{b} f(x) dx \approx T_{n}$ = $\frac{\Delta x}{2}$ (f(x) + 2f(x) + 2f(x) + $+2f(x_{n-1})+f(x_n)$ where $\triangle X =$ $rac{b-a}{n}$

Note that $T_n =$ $f(x_1) + f(x_2) + \cdots + f(x_{n-1}) + f(x_n)$
2

area of trapezoid

Error of approx. $E_{\mu} = \int_{a}^{b} f(x) dx - M_{n}$. $E_{T} = \int_{a}^{b} f(x) dx - T_{n}$ Error bounds: suppose $|f''(x)| \le K$ for $a \le x \le b$ then $|E_{M}| \leq \frac{K(b-a)^{3}}{24n^{2}}$ $|E_{T}| \leq \frac{K(b-a)^{3}}{12n^{2}}$ Similar to trapezoidal rule another rule to
approximate integrals is Simpson's rule $\int_{a}^{b} f(x) dx \approx S_{n}$ = $\frac{\Delta \chi}{3}$ $f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots$ + 4 $f(x_{n-2})$ + 2 $f(x_{n-1})$ + $f(x_n)$ where $\Delta x = \frac{b-a}{n}$ Error $E_s = \int_{a}^{b} f(x) dx - S_n$ Error bound: suppose $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$ then $|E_s| \leq \frac{K(b-a)^2}{(b-a)^4}$

How to use these approx in practice? A naire example Take $f(x) = x^2$, $1 \le x \le 4$ and consider to find $n \ge 1$ $st.$ $|E_M| < 0.1$ Given $|E_M| \leq \frac{K(b-a)^5}{24 n^2}$ here $K=2$ as $f''(x) \equiv 2$ $6-a = 4-1 = 3$ $\Rightarrow \frac{2 \cdot 3^{5}}{24 n^{2}} = \frac{54}{24 n^{2}} \le 0.1$ \Rightarrow $n \ge \sqrt{\frac{54}{24}} \approx 47$ So the smallest n to take is t.

Improper integrals . So far we dealt with $\int_{a}^{b} f(x) dx$ for $\chi \in [a,b]$ a finite interval • f- piecewise continuous, finite There are called proper integrals (note that this
has nothing to do with proper $\frac{P(x)}{Q(x)}$). In this section we are going to study improper integrals. $Type I$ def $\int_{a}^{\infty} f(x) dx := \lim_{\epsilon \to \infty} \int_{a}^{\epsilon} f(x) dx$ $f(x) dx := \lim_{t\to-\infty} \int_t^b f(x) dx$ $\int_{-\infty}^{b} f(x) dx =$
 $\int_{-\infty}^{\infty} f(x) dx =$ $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$ $=\int_{-\infty}^{+\infty} f(x) dx$
= lim $\int_{t\to-\infty}^{+\infty} f(x) dx$ $\lim_{t\to -\infty}\int_{t}^{a} + \lim_{t\to\infty}\int_{a}^{t}$ An improper integral is convergent if the above An improper integral is convergent!
Limit exists, otherwise it is divergent

Type I if $f \rightarrow \infty$ at some point $c \in [a, b]$ $\int_{a}^{c} f(x) dx := \lim_{t \to c^{-}} \int_{a}^{t} f(x) dx$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{c}$ $\int_{c}^{b} f(x) dx := \lim_{t \to c^{+}} \int_{t}^{a} f(x) dx$ $\int_{a}^{b} f(x) dx := \int_{a}^{c} + \int_{c}^{b}$

Example 1. Lo^{o e-x} dx

= loin $\int_{0}^{t} e^{-x} dx =$ loin $[-e^{-x}]_{0}^{t}$

= $\ln 4 - e^{-t} - 1 = -1$

Example 2 $\int_{1}^{\infty}\frac{1}{x^{p}}dx p=1$ = $\lbrack \begin{array}{c} \text{tan} \\ \text{tan} \end{array} \rbrack$, $\frac{1}{x}$ dx $Note that
• this diverges
if $p < 1$$ $= \lim_{t \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_t^t$ = $\lim_{t \to \infty} \frac{1}{p-1} \left(\frac{1}{t^{p-1}} - 1 \right)$ · We can replace
1 with any real
number a. $=\frac{1}{p-1}$

 $Example 3.$ $\int_{0}^{1} \frac{1}{x-1} dx$ $=\lim_{t\rightarrow1^{-}}\int_{0}^{t}\frac{1}{x-1}dx$ = $ln_{1} (ln|t-1| - ln|-1|)$ = $ln|t-1|$ $= -\infty$ diverges. Comparison test for improper integrals. Suppose fixi. gixi are continuous, nonnegative $\int_{a}^{\infty} f(x) dx$ com. \Rightarrow $\int_{a}^{\infty} g(x) dx$ com. $\int_{a}^{\infty} g(x) dx dx$ dr. \Rightarrow $\int_{a}^{\infty} f(x) dx dx$ $\frac{76}{\sqrt{6}}$ remember
 $\int_{a}^{\infty} \frac{1}{x^{p}} dx \frac{coshx}{du}$, $p = 1$ $f(x)$ $\overline{\mathcal{X}}$

Example 4. Show the integral I is divergent Show the integ
I = $\int_{1}^{\infty} \frac{1+e^{-x}}{x} dx$ $Since \frac{1+e^{-x}}{x} > \frac{1}{x} (as e^{-x})$ $x > 0$) and $I = \frac{1+e^{-x}}{x} > \frac{1}{x}$ $\int_{1}^{\infty} \frac{1}{x} dx$ $=$ lim $\int_{t\to\infty}^{t} \frac{1}{x} dx =$ lim $\left[ln|x| \right]_{t\to\infty}^{t}$ $=$ lim but = ∞ diverges. B y comparison test I diverges.

More examples on comparison test 1. $I = \int_{1}^{1} \frac{1}{\sqrt{x^{6}+1}} dx$ conv. Note that for $15x < 0$
 $0 \le x^6 \le x^6 + 1$ $\Rightarrow o \leq \sqrt{x^6} \leq \sqrt{x^6 + 1}$ $\Rightarrow \frac{1}{\sqrt{x^6+1}} \le \frac{1}{\sqrt{x^6}} = \frac{1}{x^3}$ $\frac{1}{2}$ Hence $\int_{1}^{\infty} \frac{1}{x^3} dx$ com. \Rightarrow I com. 2. $I = \int_{2}^{\infty} \frac{\cos^{2}(x)}{x^{2}} dx$ conv. Note that $0 \le cos^2(x) \le 1$ for all x $\Rightarrow 0 \leq \frac{cos^2(x)}{\chi^2} \leq \frac{1}{\chi^2}$ Hence $\int_{2}^{\infty} \frac{1}{x^{2}} dx$ conv. \Rightarrow $\begin{array}{ccc} 2 & \text{conv.} \end{array}$

 $3. I = \int_{3}^{\infty} \frac{1}{x-e^{-x}} dx dx$ Since $0 < e^{-x} < x$ for $x > 3$ $0 < x-e^{-x} < x < \infty$ \Rightarrow $0 < \frac{1}{\chi}$ \leq $\frac{1}{\chi - e^{-\chi}}$ $\overline{8}$ Hence $\int_{3}^{\infty}\frac{1}{x}dx dx \implies I dx$