Last time: improper integral
This time: arc length
In this chapter we are going to study applications of integrals.
Lets first consider how to compute arc length

$$
\begin{aligned}
& C=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|p_{i-1} p_{i}\right| \\
\left|p_{i-1}, p_{i}\right| & =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& =\sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}} \Delta x
\end{aligned}
$$

taking limits gives f^{\prime}
Let $y=f(x)$ be the curve If f is continuow, arc length for $x \in[a, b]$

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Similarly, let $x=g(y)$ be the curve, then arc length for $y \in[c, d]$

$$
L=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Example 1. $y=e^{x} \quad 0 \leqslant x \leqslant 2$

$$
\Rightarrow \quad L=\int_{0}^{2} \sqrt{1+\left(e^{x}\right)^{2}} d x
$$

or $L=\int_{1}^{e^{2}} \sqrt{1+\left(\frac{1}{y}\right)^{2}} d y$ as $x=\ln y$

Example $2 \quad x^{2}+y^{2}=1$ unit circle
Using symmetry take the upper half circle

$$
\begin{array}{r}
y=\sqrt{1-x^{2}} \quad-1 \leqslant x \leqslant 1 \\
\Rightarrow L=\int_{-1}^{1} \sqrt{1+\left(\frac{2 x}{2 \sqrt{1-x^{2}}}\right)^{2}} d x
\end{array}
$$

Are length function

$$
s(x)=\int_{a}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
$$

Example 3. $f(x)=x^{2}-\frac{\ln x}{8}$

$$
\begin{aligned}
s(x) & =\int_{1}^{x} \sqrt{1+\left(2 t-\frac{1}{8 t}\right)^{2}} d x \\
& =\int_{1}^{x} \sqrt{1+4 t^{2}-\frac{1}{2}+\frac{1}{64 t^{2}}} d x \\
& =\int_{1}^{x} 2 t+\frac{1}{8 t} d t \\
& \left.=t^{2}+\ln t\right]_{1}^{x} \\
& =x^{2}+\frac{\ln x}{8}-1
\end{aligned}
$$

Surface of revolution
A surface of revolution is formed by rotating a curve about a line (usually the x or y axis).

e.g. rotating $y=x$ about y-axis
dst ℓ

To define the area, recall the surface area of a cylinder is $2 \pi R l$.
If we take infinitesimal line segement $d s$, the small piece is approximate cylinder

$$
\begin{aligned}
S & \approx \sum_{i=0}^{n} 2 \pi f(x) \cdot d s \\
\Rightarrow S & =\int_{a}^{b} 2 \pi f(x) d s
\end{aligned}
$$

Using arc length

$$
\begin{gathered}
d s=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
\Rightarrow S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{gathered}
$$

Given curve $y=f(x)$, rotation about x-axis

$$
S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

Similarly, given curve $x=g(x)$, rotation about y-axis.

$$
S=\int_{c}^{d} 2 \pi x \sqrt{1+\left(x^{\prime}\right)^{2}} d y
$$

Example 1. $\quad y=\sqrt{9-x^{2}} \quad-2 \leqslant x \leqslant 2$
rotate about the x-axis

$$
\begin{aligned}
d s & =\sqrt{1+\left(y^{\prime}\right)^{2}} d x=\sqrt{1+\left(\frac{2 x}{2 \sqrt{9-x^{2}}}\right)^{2}} d x \\
& =\sqrt{1+\frac{x^{2}}{9-x^{2}}} d x=\sqrt{\frac{9-x^{2}+x^{2}}{9-x^{2}}} d x \\
& =\frac{3}{\sqrt{9-x^{2}}} d x
\end{aligned}
$$

$$
\begin{aligned}
S & =\int_{-2}^{2} 2 \pi y d s \\
& =\int_{-2}^{2} 2 \pi \sqrt{9-x^{2}} \frac{3}{\sqrt{9-x^{2}}} d x \\
& =\int_{-2}^{2} 6 \pi d x \\
& =24 \pi
\end{aligned}
$$

Example 2. $\begin{aligned} y=e^{x} \quad 0 \leq x \leq 2 \\ \text { notate about } y=20\end{aligned}$
rotate about $y=20$

$$
\begin{aligned}
R(x) & =20-e^{x} \\
S & =\int_{0}^{2} 2 \pi R(x) d s \\
& =\int_{0}^{2} 2 \pi\left(20-e^{x}\right) \sqrt{1-e^{2 x}} d x
\end{aligned}
$$

Application
Example 1. hydrostatic pressure and force

$$
F=m g=p g A d \text { of a plate }
$$

density acceleration due to gravity

$$
P=F / A=\rho g d
$$

pressure
Compute the force on one end of a cylinder with radius 3 if it is submerged in water of depth 10

$$
\begin{aligned}
& F=\rho g A d \quad d=7-y \\
& \Delta A \approx 2 \sqrt{9-y_{i}^{2}} \Delta y \\
& d A=2 \sqrt{9-y^{2}} d y \quad \Delta y \rightarrow 0
\end{aligned}
$$

$$
\Rightarrow \quad F=\int_{-3}^{3}(7-y) \rho g \sqrt{9-y^{2}} d y
$$

Example 2 moments and center of mass.

(moment) $M_{y}=\sum_{i} m_{i} x_{i}$
(center) $\bar{x}=\frac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}}=\frac{M y}{m}$

$$
\begin{aligned}
m & =\rho A=\rho \int_{a}^{b} f(x) d x \\
M y & =\rho \int_{a}^{b} x f(x) d x \\
M_{x} & =\rho \int_{a}^{b} \frac{1}{2}(f(x))^{2} d x \\
\bar{x} & =\frac{M_{y}}{m} \quad \bar{y}=\frac{M_{x}}{m}
\end{aligned}
$$

here $y_{i}=\frac{1}{2} f(x)$ since we are taking the center of rectangle
Find the center of mass of a semicircular plate

$$
\begin{aligned}
\bar{y} & =\frac{1}{A} \int_{-r}^{r} \frac{1}{2}(f(x))^{2} d x \\
& =\frac{1}{\frac{1}{2} \pi r^{2}} \frac{1}{2} \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x \\
& =\frac{2}{\pi r^{2}} \int_{0}^{r} r^{2}-x^{2} d x \\
& =\frac{2}{\pi r^{2}}\left[r^{2} x-\frac{x^{3}}{3}\right]_{0}^{r}=\frac{4 r}{3 \pi}
\end{aligned}
$$

Summary
Infinitesimal line element

$$
\begin{aligned}
d s & =\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
\end{aligned}
$$

Are length $L=\int d s$

Infinitesimal area element

$$
d A=2 \pi R d s
$$

distance between point on curve and rotating axis
Surface area (by revolution)

$$
\mathcal{S}=\int d A
$$

Two particular cases
about x-axis $\delta=\int 2 \pi y d s$
about y-axis $S=\int 2 \pi x d s$

